
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Transforming Relational Data into Ontology Based RDF Data

by

Martin Švihla

A thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

PhD programme: Electrical Engineering and Information Technology
Specialization: Computer Science and Engineering

June 2007

Thesis Supervisor:
Ivan Jeĺınek
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13
121 35 Praha 2
Czech Republic

Copyright c© 2007 by Martin Švihla

ii

Abstract and contributions

The semantic web is the initiative, which strives to solve the current web’s problems by
adding machine-understandable metadata to web resources. These metadata, when han-
dled by intelligent agents or applications, enable automatic information processing and
improve information retrieval, sharing, aggregation, or management.

It is a widely-accepted fact that the growth of the semantic web is dependent on the mass
creation of metadata that will cover current web resources. In this thesis we aim to address
the problem of the semantic web metadata production. Since most of the web content is
backed by relational databases (RDB), this thesis is focused on transformation of relational
data into RDF metadata based on mapping between a relational database schema and
existing RDFS ontology. This transformation adds explicit semantics to relational data by
means of semantic web technologies.

In this thesis we propose a new data transformation model based on two layers. This
model is designed with regard to its performance and usability. Our work stands on the
theoretical foundations of semantic web technologies but we also take into account practical
issues while developing the formal model. In addition, we implement a data transformation
prototype and deploy it in various case studies. The experiments with the implemented
system prove that algorithms derived from our data transformation model are more efficient
that those published before in related works.

The main contributions of the thesis are the following:

1. A formal description of a new model for data transformation based on schema map-
ping.

2. Design of two declarative XML languages based on the proposed model.

3. Proposal of a high performance data transformation algorithm based on the model.

4. Implementation of the data transformation tool and its deployment in several exper-
imental case studies.

5. Experimental verification of our approach that gives a new view to current approaches
of RDB to RDF data transformation and RDF storage.

Moreover, it appears that our data transformation model and algorithm can be generalised
to be used with other data formats and formalisms. This indicates room for future research
in the field.

Keywords:

semantic web, data transformation, RDF, relational database, relational model, RDFS,
ontology

iii

Acknowledgements

First of all, I would like to express my gratitude to Professor Pavel Tvrd́ık and my su-
pervisor Ivan Jeĺınek, who accepted me for graduate study and gave me an opportunity
to spend all that interesting and enjoyable time at the university. Indeed, my biggest
acknowledgement goes to my thesis supervisor who supported me during my study in the
formal and expert ways. I most appreciate the human approach that he takes towards his
students.

Many other people influenced me and my work. I cannot name every colleague from the
department so I thank them all for creating an inspiring and friendly environment. I have
learned a lot working with them.

I must name some other people who showed me the purpose and means of scientific work
and gave a direction to my thesis and personal development. These people are Stefan
Stenudd, Robert Shipley, Vojtěch Svátek, and Darja Havelková. I would never have grown
to the point of finishing this thesis without their guidance.

My research work and completed thesis would not be possible without the support of our
department. Again I thank Mr. Tvrd́ık and also Mr. Kolář for taking care of my financial
aid. Moreover, my work has been partially supported by the FRVŠ grant agency under
grant no. 1804/2005, an internal grant from the Czech Technical University (IGS) under
the external number CTU0507513, and from the Czech Grant Agency under grant GAČR
no. 201/06/0648.

I could endlessly continue with my acknowledgements but I will stop now. The dedication
of this work is for all those to whom I wish to show my respect and gratitude.

iv

Dedication

To my parents and all others who open my spirit for possibilities.

v

Motto

Everything should be made as simple as possible, but no simpler.
(Albert Einstein)

vi

Brief contents

1 Introduction 1

2 Background and state of the art 6

3 Overview of our approach 22

4 Data transformation model 31

5 Data transformation languages 56

6 Completness of the data transformation 74

7 Implementation 86

8 Performance analysis 96

9 Case studies 107

10 Conclusion 111

11 Bibliography 115

12 Refereed publications of the author 124

13 Unrefereed publications of the author 125

A Schema mapping and template document listings 126

B Summary of OWL support 129

C Acronyms used in the text 130

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Application scenario . 2

1.1.2 Possible uses . 3

1.2 Contributions of the thesis . 4

1.3 Thesis structure . 5

2 Background and state of the art 6

2.1 Semantic web . 6

2.1.1 Overview . 6

2.1.2 History and current status . 7

2.1.3 Technologies . 9

2.1.3.1 Internet . 10

2.1.3.2 World Wide Web . 10

2.1.3.3 XML . 12

2.1.3.4 RDF . 13

2.1.3.5 Ontologies . 14

2.2 Metadata generation . 15

2.2.1 Manual annotation . 15

2.2.2 Semi-automatic annotation . 16

2.3 Existing relational model to RDF mapping approaches 17

2.3.1 Mapping and data transformation in other domains 18

2.3.2 Early proposals . 19

2.3.3 RDF gateways to relational databases 19

2.3.4 Relational database to RDF transformers 20

3 Overview of our approach 22

3.1 Definitions and terminology . 22

3.2 Topic overview . 23

3.3 Partial goals . 24

viii

3.3.1 Data transformation . 24

3.3.2 Performance . 24

3.3.3 Usability . 25

3.4 Formal goal specification . 25

3.5 Goal summary . 27

3.6 Methodology of the work . 28

3.6.1 Formal model and derived languages 28

3.6.2 Data transformation system implementation 29

3.6.3 Experimental evaluation . 30

3.6.4 Experimental deployment . 30

4 Data transformation model 31

4.1 Problem specification . 31

4.2 Formal definitions . 32

4.2.1 Relational model . 33

4.2.2 RDF data model . 34

4.2.3 RDF Schema (RDFS) . 37

4.2.4 OWL (Web Ontology Language) 38

4.3 Discussion on used formalisms and data formats 39

4.3.1 Schema mapping . 40

4.3.2 Instance transformation . 42

4.4 Design rationale . 42

4.5 Schema mapping layer . 43

4.5.1 Concept mapping . 44

4.5.2 Relationship mapping . 47

4.5.3 Schema constraints . 48

4.5.4 Mapping document . 48

4.6 Template layer . 48

4.7 Putting both layers together . 51

4.8 Discussion: result of the data transformation 52

4.9 Summary . 55

ix

5 Data transformation languages 56

5.1 Running example . 56

5.2 Comment on syntax . 57

5.3 Language semantics overview (informative) 58

5.3.1 Schema mapping language . 58

5.3.2 Template language . 62

5.4 Schema mapping language syntax (normative) 65

5.4.1 General elements . 65

5.4.2 Concept elements . 66

5.4.3 Relationship elements . 68

5.5 Template language syntax (normative) . 70

5.5.1 General elements . 70

5.5.2 Production elements . 71

5.6 Summary . 72

6 Completness of the data transformation 74

6.1 Relational completeness . 74

6.1.1 Selection and Projection . 74

6.1.2 Cartesian Product . 75

6.1.3 Set-Union and Set-Difference . 76

6.1.4 Composition of Operations . 77

6.1.5 Summary . 77

6.2 RDFS support . 77

6.2.1 RDFS classes . 78

6.2.2 RDFS properties . 78

6.3 RDF support . 80

6.4 OWL support in the data transformation model 83

6.4.1 Directly supported OWL features 84

6.4.2 Indirectly supported OWL features 84

6.4.3 Unsupported OWL features . 84

6.4.4 Irrelevant OWL features . 84

6.5 Summary . 85

x

7 Implementation 86

7.1 METAmorphoses – data transformation processor 86

7.1.1 Processor architecture . 86

7.1.2 Data transformation process . 87

7.1.3 Performance considerations . 88

7.1.4 Practical considerations . 89

7.1.4.1 Schema mapping layer . 90

7.1.4.2 Template layer . 90

7.1.4.3 Creating data transformation documents 90

7.1.4.4 Developer roles . 91

7.1.4.5 Discussion on usability . 92

7.1.5 Current status and future work . 92

7.2 RDF-Shout – publishing RDF metadata on the web 93

7.3 Schema mapping editor . 94

7.4 Summary . 95

8 Performance analysis 96

8.1 Experiment overview . 96

8.1.1 Testing environment . 96

8.1.2 Compared software . 96

8.1.2.1 METAmorphoses v.0.2.5 97

8.1.2.2 D2RQ v0.5 . 97

8.1.2.3 SquirrelRDF . 97

8.1.2.4 Jena v2.5.1 (persistent DB model) 97

8.1.2.5 Sesame v1.2.6 (persistent DB model) 98

8.1.3 Testing dataset . 98

8.1.4 Experiment methodology . 98

8.2 Experiments and results . 99

8.2.1 Experiments with the result size . 99

8.2.2 Experiments with the graph pattern complexity 100

8.2.3 Experiments with the query condition complexity 101

8.3 Discussion . 103

xi

8.4 Summary . 106

9 Case studies 107

9.1 SeWebis – department of computer science on the semantic web 107

9.2 Semantic information retrieval . 108

9.3 Publication portal . 109

10 Conclusion 111

10.1 Thesis summary . 111

10.2 Contribution summary . 112

10.3 Future work . 112

10.4 General conclusion . 113

11 Bibliography 115

12 Refereed publications of the author 124

13 Unrefereed publications of the author 125

A Schema mapping and template document listings 126

A.1 Schema mapping document . 126

A.2 Template document . 127

A.3 Resulting RDF . 128

B Summary of OWL support 129

C Acronyms used in the text 130

xii

List of Figures

2.1 Semantic web technologies . 9

2.2 Tim Berners-Lee’s proposal of distributed hypertext system (from [9]) . . . 11

4.1 Data transformation schema . 31

4.2 RDF graph example . 35

4.3 RDFS primitives . 38

4.4 Data transformation architecture . 43

4.5 Mapping class . 45

4.6 Example of a template document tree . 50

4.7 Sample of a resulting RDF graph . 50

4.8 The binding between the schema mapping and template layer 51

4.9 Sample of a resulting RDF graph with cycle 54

5.1 Schema mapping language elements . 59

5.2 The template language elements . 62

7.1 METAmorphoses architecture . 87

7.2 Data transformation process . 89

7.3 RDF-Shout architecture . 93

7.4 Schema mapping editor . 94

8.1 Test times rise with the result size . 101

8.2 Tests with the graph pattern complexity: graph patterns 102

8.3 Test times rise with the graph pattern complexity 103

8.4 Tests with the query condition complexity: graph patterns 104

9.1 METAmorphoses extends a dynamic web site 107

9.2 Prototype of the semantic search engine user interface 109

xiii

List of Tables

3.1 Schema sample . 27

4.1 Node basic properties . 36

4.2 Edge basic properties . 37

4.3 Schema correspondences . 41

4.4 Data format correspondences . 42

8.1 Tests with the result size: queries . 100

8.2 Tests with the result size: results (times in ms) 100

8.3 Tests with the graph pattern complexity: results (times in ms) 101

8.4 Tests with the query condition complexity: results (times in ms) 103

8.5 Time (in ms) for producing one triple (100 times), which is based on the
first test set . 104

B.1 Summary of OWL support . 129

xiv

CHAPTER 1. INTRODUCTION 1

1 Introduction

The World Wide Web (WWW) is the largest knowledge database that mankind has ever

created. Its simple and open principles enable people to publish or access information in

a very easy way. On the other hand, as the web continuously grows, we face problems

with the amount of information and its organisation. It is getting more and more difficult

to find relevant information, manage heterogeneous knowledge sources, and transparently

aggregate several information providers. This problem is complicated by the fact that the

most current web content is presented only for humans to read and understand. Machines

– software agents, web crawlers, and search engines – can hardly understand semantic

information on web pages. This means that they can only minimally help with searching

for a proper piece of information, for example. In other words, for computers the web

content is only data, not information.

There are several initiatives to improve the situation. One of them is the semantic web,

which would give more structure and computer-understandable meaning to the data on

the WWW. The semantic web is not a separate web but an extension of the current one,

in which information is given well-defined meaning, better enabling computers and people

to work in cooperation [14].

The idea is to enrich web resources by metadata, which are capable of describing the

meaning of information in a computer-understandable way. These metadata can be used for

example for semantic information retrieval, knowledge sharing, automatic data interchange,

intelligent agent processing, and hypermedia adaptation.

However, these possibilities are not yet used. Though the semantic web standards are

already deployed, the web is still not annotated by metadata. Metadata generation and

processing are still topics of a research. Our work is focused on the generation of semantic

web content, as detailed in the following section.

1.1 Motivation

Realization of the semantic web is still in its very early stage and widespread use is yet

to be achieved. Its success also depends on mass creation of semantic metadata that is

expected to cover the existing web by machine-understandable meaning. To reach this

goal, several approaches for manual and/or automatic annotation of existing web resources

CHAPTER 1. INTRODUCTION 2

were designed.

Since a large number of web resources are dynamic websites with relational database (RDB)

at the back-end, we focus our work into this area. In our work we investigate the issue of

metadata generation directly from a data source, so that production is fast and cheap and

metadata are always up-to-date.

Another aspect we observe is usability of the proposed solution. It is suggested [54] that

the creation of metadata should be as simple as the creation of HTML. Unfortunately, this

is not the case yet. The success of the web is based on its simplicity, but semantic web

technologies are much more complex. One mission in semantic web research today is to

hide this complexity from the web community [69].

As an answer to these challenges, in this work we propose a system for generating metadata

directly from relational data. The data transformation concept is based on the mapping of

a relational database schema to an ontology. This transformation adds explicit semantics

to relational data by means of semantic web technologies.

The following application scenario will explain the ideas in a practical example, the formal

specification of goals of our work can be found in Chapter 3.

1.1.1 Application scenario

Let us imagine a university web portal in which there are HTML web pages about teachers,

students, educational activities, and research projects. The content of this portal is quite

well-structured, and let us say there is one PHP script for each group of pages. In fact,

this script is a template for a group of similar pages. For instance, pages about various

persons are structurally identical – there is a name, position, contact, list of publications,

and etcetera.

However, these pages are not machine-understandable, which means that information can-

not be processed automatically. The task is to make semantic extension of this web pre-

sentation, so that every person, project, and subject has its own metadata representation

in semantic web data formats.

Data for a web presentation are stored in an RDB, where they are even better structured

than in HTML documents. Since in our hypothetical case a portal maintainer is responsible

for deployment of a semantic extension, metadata can be produced directly from a database

in the same way as HTML. Another requirement is that the semantic part of the web portal

CHAPTER 1. INTRODUCTION 3

should be independent from the classical one so that existing parts of the portal do not

have to be changed.

Since the semantic web is quite a new idea and underlying technologies are much more

complex than old web technologies, it can be a problem for web application developers to

implement and deploy the semantic web extension of their portal. This situation can be

greatly improved by providing a tool that shades web developers from the complexities of

semantic technology and makes a metadata production simple and easy. In this work we

propose a data transformation system as such a tool.

Using this tool the semantic metadata can be easily produced directly from a database

simply by writing a set of XML files, because a programming interface of the framework

is based on two proposed XML languages. Moreover, the system architecture is designed

to make the system easily adaptable in the current web development process.

A process for developing the semantic web portal with our mapping framework can be

briefly described as follows. First, an ontology for a university knowledge domain is de-

veloped. Then a mapping from database schema to an ontology structure is designed.

According to this mapping metadata can be produced and published on the web in order

to extend classical web documents. Since the presented information is well structured and

there are templates for HTML pages about persons, projects, subjects and so on, it is

obvious that mapping can also consist of templates, which form the base for groups of

RDF documents.

Such a semantic extension would transform a university information system into a part of

the semantic web, which means that its information can be transparently shared with other

subjects. It also enables development of sophisticated applications (semantic information

retrieval, for example; see section 9.2) on top of the semantic portal.

1.1.2 Possible uses

Academic web portals are not the only application domain of our proposal. Other possible

uses cases for a database-to-metadata transformation are discussed in details in [95]. In

that paper are mentioned scientific databases, syndication, and community web portals.

We can add to this list e-commerce catalogues, digital libraries, and other types of web

applications, but the idea is clear: the relevant target group for such transformation is a

large number of dynamic web sites built on top of RDBs.

CHAPTER 1. INTRODUCTION 4

1.2 Contributions of the thesis

The detailed research field state-of-the-art and formal goal specification are described in

the following chapters. In this section we only provide a short list of thesis contributions:

1. A novel model for data transformation was designed and formally described. The

model differs from other approaches (Section 2.3) – it is simpler than others while

supporting all features of RDF and RDFS. The direct consequences of this simplicity

are higher usability and performance. To reach such parameters, we:

- identified correspondences between relational model and RDFS and also between

the structure of relational data and RDF and

- divided the model architecture into two layers: one for schema mapping and the

another for instance transformation based on schema mapping.

2. We proposed two XML languages based on the formal model. One language is capable

of describing schema mapping between relational schema and RDFS ontology and

the other one is for building RDF documents from relational database.

3. The part of the formal data transformation model is a proposal of high performance

algorithm for data transformation.

4. A data transformation tool was implemented according to proposed concepts and lan-

guages. This tool was also deployed in several test case studies and proved usability

and high performance of our theoretical ideas.

5. We performed a complex set of experiments with our system as well as with similar

solutions. The test results proved the high performance of our approach. Moreover,

they brought a completely new view to the field of RDB to RDF data transformation

and RDF storage (as discussed in Section 8.3).

Although this thesis is focused on the particular schema formalisms (relational model,

RDFS) and data formats (RDF), it appears that proposed concepts and algorithms can be

generalised and used for other formalisms or formats. This issue is discussed in the future

work proposal (Section 10.3).

CHAPTER 1. INTRODUCTION 5

1.3 Thesis structure

This chapter gives only a very brief introduction to the problem and our work. Chapter 2

describe the research field and its state-of-the-art in a detail way and Chapter 3 gives an

overview to our approach – thesis goals and methodology.

The formal core of the thesis is contained in chapters 4, 5 and 6. Chapter 4 proposes

the abstract data transformation architecture and formal description of the data trans-

formation model. Two XML languages built on this formal foundations are described in

Chapter 5 together with their normative syntax. All these issues are summarised in Chap-

ter 6, where we formally consider the completeness of our approach according to the used

schema formalisms and data formats.

Chapter 7 provides an overview to the data transformation system implementation – its

architecture, algorithms, performance, usability issues and supporting tools. A detailed

performance analysis is given in Chapter 8, where we compare our tool with other ap-

proaches. Several cases of the system deployment are briefly described in Chapter 9.

Chapter 10 contains the conclusion of the thesis, discussion about goals and achieved

results, as well as proposals for future work.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 6

2 Background and state of the art

The semantic web is an expanding initiative that grows from various research areas. In

this chapter we give a brief introduction to its underlying concepts and technologies.

Since our work is focused on the semantic web content generation, we also discuss related

works from this field. Though this issue is only a small part of semantic web activity,

many different approaches to this problem were developed. We introduce various concepts

of metadata production with a special focus on the problem of relational model to RDF

mapping.

2.1 Semantic web

2.1.1 Overview

As discussed in the introduction, the World Wide Web is currently reaching its limits.

Many services on the web, e.g. full-text search or catalogue services, are becoming inap-

propriate with the growing volume of information on the web. According to this, the web

has been naturally changing in recent years. There are various streams in the field based on

various concepts. A big part of knowledge management has moved to the web community

and we can witness phenomena like Wikipedia [101] and social bookmarking [100]. The

need for interoperability and cooperation is followed by the emergence of new communi-

cation protocols as web services [27] or REST [37] and new standardised data formats –

XML [43] and many its sublanguages (SVG, MathML, XForms) or ODF (Open Document

Format [74]) develop.

However, many problems on the web occur just because computer programs that process

web documents do not understand the meaning of the web content; the web was designed

mainly for human users. However, classical techniques of artificial intelligence, like natural

language processing, are not able to solve this problem today due to the huge heterogeneity,

lack of central control, and openness of the web.

The semantic web [14] is an initiative that focuses on solving the mentioned problems in the

global web environment. It is not based on classical artificial intelligence. Its idea is quite

simple: it provides a simple method to express information in computer-understandable

way. Since it was proposed as an extension of the current web, its standards are designed

CHAPTER 2. BACKGROUND AND STATE OF THE ART 7

for a distributed data environment. Since both information and its structure are described

in a standardised fashion, the computer application can ”understand” this information and

process it automatically.

2.1.2 History and current status

The process of adding semantic metadata to the web content in order to help computers

with processing of web content started very early – almost right after the birth of the web.

HTML language, used on the World Wide Web, had no mechanisms to semantically markup

the content in its very first versions. According to this some metadata tags were added to

HTML 1.2 early on (in 1993), but due to their simplicity they caused almost no improve-

ment.

Another attempt, trying to add ontology into web pages, was the introduction of Simple

HTML Ontology Extensions (SHOE) [52] in 1995, but this language was never widely used.

It can be said that semantic web activity began in 1997, when Resource Description Frame-

work (RDF) was proposed. However, the complete concept of the semantic web was pre-

sented in 2000 [11]. This presentation proposed the philosophy, architecture and practical

deployment of the semantic web.

Since 2000, we have seen very intensive research activity, focused mainly on the deployment

of semantic web standards. As a result of this effort all fundamental standards (RDF,

RDFS and OWL) were released as W3C recommendations in the first half of 2004.

Consequently many experimental projects were deployed in the year 2004 to demonstrate

semantic web capabilities in areas as web search [32], knowledge sharing [84], and informa-

tion management [29].

However, the semantic web vision of a universal medium of data exchange is not yet

realized. This is not only because of lingering practical issues, but mainly because the

semantic web idea is not yet accepted by the wider web community. From a practical

point of view there is no profit for a common web portal to enter the semantic web.

This has two explanations – there are almost no semantic web metadata on the web (com-

pared to the amount of web documents) and there are no applications that would make

metadata useful. These two reasons creates a deadlock – web page maintainers would not

provide their content in metadata formats because of a lack of applications and software

CHAPTER 2. BACKGROUND AND STATE OF THE ART 8

companies would not deploy applications that have no metadata to process.

Unfortunately, this status is ignored almost by all semantic web researchers today. The

activity in the field in the last two years has been focused on improving expressiveness of the

technology (named graphs [21], Fuzzy OWL [90] etc.). This work would have made sense

if there were already metadata and processing applications that could be improved, which

is not yet the case. Considering practical applications being developed in the community,

they are very simple (e.g. FOAF [18], RSS1.0 [82], DublinCore [30]) or the technology

is closed in a particular application domain instead of being open to the whole web (e.g.

K-Space activity1, KP-Lab2 or many others), or both.

In this thesis we would like to stress the importance of easy and effective RDF production

based on currently available standards. We are not alone in this opinion – very respected

authorities have recently pointed in this direction.

Rudi Studer challenged the semantic web community to create applications that are bigger

than ”Tweety”3 (i.e. bigger than very small) at the International Semantic Web Conference

2006 [93].

Tim Berners-Lee also called at researchers on semantic web conferences to focus on practical

application of the technology rather than on extending logical foundations of existing

standards4.

According to this, the current task for the semantic web community is to (i) create a

critical mass of metadata that will activate a chain reaction of metadata production and

application deployment, and (ii) bring complex and complicated semantic web technologies

closer to the web community.

This thesis is to address both of these challenges.

1K-Space project website is available at http://kspace.qmul.net/.
2KP-Lab project website is available at http://www.kp-lab.org/.
3Tweety is a small bird from Warner Brothers cartoons, always chased by Sylvester the Tom Tom

Tomcat
4This paragraph is only an informal statement. The issue is very sensitive and we cannot find any

formal document on this. It happen in 2005 during a Lee’s talk at ISWC or ESWC (according to an
informal information from Prof. RNDr. Peter Vojtáš, DrSc.). However, some points on this issue can be
found in Lee’s presentation at ISWC 2005 Industry Day ([12], page 26)

CHAPTER 2. BACKGROUND AND STATE OF THE ART 9

2.1.3 Technologies

In this section we discuss semantic web technologies. Since the semantic web is built on

top of World Wide Web, first we introduce the concepts lying under the semantic web.

Thus we will briefly look at the Internet and World Wide Web and we will describe how

they relate to the semantic web. Then XML will be discussed as the base for the semantic

web and the description of RDF and ontologies will follow.

The technologies of the semantic web create a pyramid composed of layers (Figure 2.1).

This schema is quite old (proposed in 1999 by Tim Berners-Lee) but it can still serve as a

simple illustration of the semantic web architecture. The basic layer of data representation

is RDF model and schema, which is based on XML, URI and Unicode. On the top of

RDF there is an ontology layer to define a vocabulary and rules for data expressed by

RDF. Logical rules from an ontology can be used for logical reasoning, where a new piece

of information can be inferred from an asserted one.

URIUnicode

XML Namespaces

RDF M&S

Ontology

Rules

Logic framework

Proof

Trust

Digital
signature

and
encryption

Figure 2.1: Semantic web technologies

In the following text we describe the semantic web technologies from Figure 2.1 up to the

ontology layer. Layers above ontologies are beyond the scope of our work.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 10

2.1.3.1 Internet

The current Internet grew from a small project, ARPANET, that was founded in 1969 by

the Advanced Research Projects Agency (ARPA) [67]. Very soon after, two new protocols

were introduced5 – Transmission Control Protocol (TCP) for data transfer and Internet

Protocol (IP) for member computer addressing. These two protocols are known together

as TCP/IP, low level protocol, which is a base for the current Internet.

High level protocols for various Internet services rely on TCP/IP. These protocols are for

example the File Transport Protocol (FTP), Simple Mail Transfer Protocol (SMTP) or

Hypertext Transfer Protocol (HTTP) [36].

HTTP is a base for one of the most common services on the Internet – the World Wide

Web.

2.1.3.2 World Wide Web

The fundamental concepts of the World Wide Web were proposed by Tim Berners-Lee [9] in

1989. In this document, Lee described effective information management by interconnected

computers as an answer to an information overload in CERN (Figure 2.2). The solution

was based on a system of distributed documents joined by hyperlinks6. As a tool for

its implementation, the very first version of HyperText Markup Language (HTML) was

designed.

Basic principles of the web are really simple. It uses a client-server model. Data are stored

in so-called web servers and clients (web browsers) can access and render these data for

users. Web resources (mainly HTML documents) in servers are addressed by Unified Re-

source Locator (URL). The communication is defined by the Hypertext Transfer Protocol

(HTTP) [36] and consists of requests and responses. The client requests a document with

a particular URL and the server sends this document in a response. The result of such

simple architecture is that anyone can very easily publish information on the web and also

access this information pool.

An HTML7 document is a simple text file that includes some special marks. These marks,

5Interesting coincidence: Vinton Gray Cerf, one of authors of the protocols, visited Prague in April
2007 during the time this section was written.

6It is not without interest that a very similar concept was proposed by Vannevar Bush in 1945 [20]
7We refer only to HTML as to a language of hypertext documents here. XHTML is discussed in the

following section.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 11

Figure 2.2: Tim Berners-Lee’s proposal of distributed hypertext system (from [9])

called tags, mainly define how the text is organised and presented. They can identify

headers, tables, and lists, and can also format the text itself by specification of a font, colour

and so on. The most important tag in HTML is the anchor tag (text)

that indicates that the text within it is a link to a document with an address defined by

URL.

HTML also provides weak support for expressing semantic information. The tag <META>

specifies general information about the whole document including the name of the author,

the description, or keywords. Then there are attributes <REL> and <REV> for tags <A> and

<LINK>. The former specifies the relationship of the parent document to the hyperlinked

document and the latter does the same in the reverse direction.

Even though HTML itself can not express the semantics of a content, it can be enriched

by various metadata languages. Two main approaches to enriching HTML documents by

semantics are embedding metadata to HTML and linking metadata from HTML. Both

issues are discussed in [75], but currently there is no official recommendation to solve this

problem.

However, HTML language is designed to make information accessible for a human user and

CHAPTER 2. BACKGROUND AND STATE OF THE ART 12

is not suitable even for a simple data interchange between computers. XML was developed

for this task.

2.1.3.3 XML

XML stands for Extensible Markup Language [102] and it is (similarly to HTML) an

application of meta-language called Standard Generalized Markup Language (SGML) [58].

XML adds tags to a text stream to provide some structure and additional information in

the same way that HTML does, however, XML tags do not provide any explicit meaning.

The flexibility of XML allows anyone to describe any content easily, but this freedom can

cause lack of understanding between a document’s author and its consumer. The semantics

of tags in XML is only implicit; machine processing of XML documents usually relies on

standardised tag sets, e.g. DocBook [99], Scalable Vector Graphics (SVG) [98] or MathML

[97].

XHTML (Extensible HyperText Markup Language) [96] was delivered in January 2000 by

W3C to bring advantages of XML directly to HTML. This language, built on XML, was

expected to improve accessibility and functionality on the web. There are not many new

or deprecated tags and attributes in XHTML compared to HTML, there is mainly just a

new set of coding rules. XHTML was also easily extensible by any other XML documents,

which means, for instance, that it could embed fragments of RDF8.

Such a standardised grammar for XML documents can be formally defined by Document

Type Definition (DTD) [102], XML Schema [33] or RELAX NG [73] schema. The older

way is DTD, which specifies valid elements and their attributes. XML Schema is a more

recent language for restricting the structure of XML documents and also extends XML

with datatypes. Moreover, it uses XML as a serialisation syntax. A RELAX NG schema

specifies a pattern for the structure and content of an XML document. A RELAX NG

schema can be serialised as an XML document but the specification also offers a compact,

non-XML syntax. Compared to other schema languages, RELAX NG is relatively simple.

An XML document that has an associated grammar and conforms to the rules defined by

this grammar is said to be valid.

8However, these features were never properly supported by major web browsers and thus it seems the
web is not yet prepared for the technology. Due to this fact and in response to pressure from the web
community, the new W3C HTML Working Group was recently established (March 7th, 2007) to continue
HTML development.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 13

However, XML and its grammar languages provide only syntax for structured document

and have no capability to express its exact meaning. This drawback makes it difficult to

integrate or interchange XML documents automatically. To express a semantic of infor-

mation the Resource Description Framework (RDF) was developed.

2.1.3.4 RDF

To address XML semantic limitation the Resource Description Framework (RDF) [70] was

developed as a language capable of expressing meaning of information.

Compared to XML, which is document-oriented, RDF takes into consideration a knowledge-

oriented approach that is designed specifically for the web. One of the advantages of RDF

over XML is that an RDF graph depicts in a unique form the information to be conveyed

while there are several possibilities to represent the same semantic graph in XML[40].

RDF, based on the concept of semantic networks, provides a simple yet powerful data

model for semantic assertions. This model is based on so called triples. Using these triples

a semantic of information is formulated like an elementary sentence consisting of a subject,

verb and object. In this way we can make assertions that a subject, e.g. scientific paper, has

a property, e.g. is a friend of, with a particular value, such as person. Resources (subjects)

and predicates (verbs) are identified by URI, and a value of a property can either be literal

or be another URI identified resource. RDF data model is formally detailed in Section

4.2.2.

RDF provides some more features to this datamodel such as collections handling, typed

literals, and reification, which is the possibility to make assertions about a whole statement

(triple).

In the semantic web, RDF is used to describe resources in a machine-understandable way.

RDF metadata can contain assertions about anything that can be identified by URI. While

the most common URI schema is web URL for web resources identification, assertions can

also be made about real world entities such as books or even people.

There are various serialisation syntaxes for RDF, but the most common one for a RDF

document exchange is RDF/XML (based on XML), since RDF was designed to be comple-

mentary to XML in order to specify semantics for data based on XML in a standardised

and interoperable manner.

However, RDF is only a tool for resource description; it is not able to define concepts

CHAPTER 2. BACKGROUND AND STATE OF THE ART 14

in a knowledge domain. Ontologies are used to specify a vocabulary of terms and their

relationships for RDF documents in the semantic web.

2.1.3.5 Ontologies

To enable an integration of different sources, there is a need for a shared understanding

of the relevant domain. According to this ontologies were added to the concept of the

semantic web. Ontologies are able to provide a common vocabulary to support the sharing

and reuse of knowledge.

The term ontology is described by various incompatible definitions. It originally came

from philosophy, where it denotes a study of the nature and organisation of reality. In

computer science and especially in artificial intelligence the most common definition is the

one from Gruber [45]: ”An ontology is an explicit specification of a conceptualisation,”

where a conceptualisation is an abstract view of the world.

Ontologies formally describe terms used in metadata since an ontology can be used to

explicitly represent the meaning and relationships of terms in vocabularies when the infor-

mation contained in documents needs to be processed by applications.

There are several ontology formalisms – e.g. SHOE [52], DAML [53], OIL [35], DAML+OIL

[56], RDFS [17], and OWL [88]. RDFS and OWL are mainly used in the semantic web

based on RDF.

RDFS is the next level above RDF as a language to create controlled, sharable, and ex-

tensible vocabularies. It allows one to define a hierarchies of classes and properties for

RDF resources. However, RDFS is simple and provides only basic capabilities for semantic

description in RDF. For this reason another ontology language was constructed on top –

Web Ontology Language (OWL).

OWL adds more vocabulary for describing properties and classes, including: relations

between classes (e.g. disjointness), cardinality (e.g. ”exactly one”), equality, richer typing

of properties, characteristics of properties (e.g. symmetry), and enumerated classes.

The more formal description of RDFS can be found in Section 4.2.3 and OWL is described

in 4.2.4.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 15

2.2 Metadata generation

One of the core challenges of the semantic web is the annotation of existing web resources

by semantic metadata. There are various approaches to this issue, which we divided into

several categories by the following criteria:

- Who is annotating web resources?

- What is the source for the metadata creation?

- What is the level of the annotation automation?

The author of the metadata can be (i) a maintainer of the annotated web resource or (ii)

a third party. In the latter case annotation can be provided by one subject or by mass

collaboration.

A data source for the metadata creation can be (i) an annotated web resource itself (typi-

cally an HTML web page), (ii) a database from which the web resource was generated (e.g.

a relational database), or (iii) some data created specially for the purpose of annotation

(e.g. an XML file).

The annotation itself can be (i) manual, when the author of a web resource or the third-

party annotator uses some annotation tool to create metadata, (ii) semi-automatic, when

a human user effort is necessary to create a semantic template upon which the machine-

processed annotation is based, or (iii) automatic, when the artificial intelligence techniques

are used to recognise web resource semantics.

In the following subsections manual and semi-automatic annotation is discussed while

other criteria are evaluated within this division. In this work we do not consider the

fully automatic semantic annotation, which is based on natural language processing, or

automatic schema matching.

2.2.1 Manual annotation

The simplest use of the web resource annotation involves a single user editor. This appli-

cation shows an annotated resource (e.g. HTML web page or PDF file) and enables the

user to create metadata instances and their relationships by some GUI. An application

generates metadata in the appropriate format. In case the annotator is also an owner

CHAPTER 2. BACKGROUND AND STATE OF THE ART 16

of the annotated document, metadata can be embedded in the document or linked from

it. If a metadata author cannot modify an original document, he can publish metadata

separately and link an annotated document from them.

However, this kind of annotation is slow and expensive and produced metadata are always

static.

A more interesting method of annotation is the creation of metadata by mass collaboration,

i.e. by combining the efforts of a large number of people. For this purpose special appli-

cations were developed to provide means for users to communicate about web documents

by attaching external annotation metadata to the documents. Users can easily add their

metadata to the web resource by using such an application and can also find annotations

related to a particular document. Several projects address this issue – e.g. Annotea [61],

CREAM [47], MnM [94], or Mindswap [42].

These approaches usually assume that web resources are static. However, a main part

of web resources is generated dynamically, very often from relational databases. If these

resources were annotated by manual approaches, created metadata would become outdated

very quickly.

2.2.2 Semi-automatic annotation

Semi-automatic generation means that metadata are produced automatically, but rules on

how to extract semantics from a data source are designed by a human user.

There are various approaches that differ mainly in data sources for the metadata produc-

tion. One common data source is a relational database, which can be used when metadata

are provided directly by a web presentation maintainer who has access to this database.

This approach is based on mapping of relational model into an RDF data model and is

discussed in Section 2.3.

When a web resource maintainer does not want to provide database access to third par-

ties, but wants them to query a data source, it is possible to add more semantic to the

web resource. This approach can be illustrated, for example, by the so-called On Deep

Annotation [48]. The goal of this project is to allow interested parties to gain access to

the source data by providing a semantic mapping between a relational database and the

resulting HTML document.

The third possibility is when the annotation author only has access to the resulting web

CHAPTER 2. BACKGROUND AND STATE OF THE ART 17

resource, typically the HTML web page. The semantic extraction from the web resource

can be done by using wrappers [83]. These computer applications use explicit definition of

HTML or XML queries to extract information from an HTML page. This way metadata

can be created from a set of structurally similar web pages. The semantics of annotated

web resources is usually recognised by a human user who creates HTML queries, although

there are also approaches using AI techniques [24]. However, the shortcoming of this

approach is that the metadata production depends on a document layout rather than on

the underlying data structures.

2.3 Existing relational model to RDF mapping approaches

Since a great amount of data is stored in relational databases and one idea of the semantic

web is to enable transparent interoperability between these data sources, there are sev-

eral studies of relational data to RDF migration. These approaches differs in purpose,

architecture, usability, algorithm efficiency, and so on. In this section, we examine major

contributions to this field and their main attributes.

As discussed in the previous chapter, the question is how to expose the content of a

relational database as RDF. This problem can be solved by two different approaches:

- A relational database is queried by an RDF query language. Mapping is

created between relational database schema and predefined ontology and based on

this mapping, relational data can be queried by semantic queries. A result of the

query is a set of RDF statements.

- A relational database content is transformed into RDF. A subset of relational

database content is transformed into RDF. Resulting RDF can be stored in static

RDF documents or in a native RDF database.

Both approaches are discussed in the following subsections, but first we mention the related

research areas and early proposals in our field.

It is necessary to stress that our approach does not fit into this simple classification since

it stands between these two main groups. We do not use any standardised semantic query

language to fetch data from relational databases nor do we transform whole database

content into RDF. These issues are detailed in chapters 3 and 4.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 18

2.3.1 Mapping and data transformation in other domains

A long time before the semantic web appeared there was a need for schema mapping and

data transformation in order to support integration across organisational and application

boundaries.

A lot of work was done in database schema integration in the 1980s (summed in the survey

[3]) and this effort was extended with automatic schema matching approaches in the 1990s

[81]. These works refer to integration of relational databases.

Another very inspiring area is a migration of relational schemas and data to object-oriented

(OO) databases [15]. RDFS formalism is very similar in structure to OO with respect to

classes, properties, and inheritance rules. It is very interesting that evolution of RDB to OO

DB transformation is quite similar to RDB to RDF approaches. A spectrum of relational

schema approaches to OO mapping range from fully-automated transformers that omit

many OO features [1] through interactive mapping tools [59] to extensive methodologies

for a reverse engineering with a semantic enrichment [46]. These approaches mostly con-

sider schema mapping but not data transformation. An interesting exception is [8], which

considers a complete migration process, i.e. semantic enrichment, schema transformation,

and data migration.

XML was introduced in 1996 and a need for data migration between XML and RDBs

appeared immediately. Many approaches considered mappings between relational schemata

and DTD [102], XML Schema [33] or RELAX NG [73] schemata. Production of XML

from relational datasources was proposed, for example in [87], and the opposite direction

is discussed in [39].

As different ontology formalisms evolved during the late 1990s (see Section 2.1.3.5) there

were also attempts to map relational schemas to these formalisms. One example is proposed

in [62], an approach for designing an ontology for information retrieval based on: (a) the

schemas of the databases, and (b) a collection of queries that are of interest to the users.

Works on RDB to RDF migration described in the following text stand more or less on

these foundations.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 19

2.3.2 Early proposals

The semantic web is sometimes proposed as a huge distributed database. Thus very early,

in 1998 (one year after the first RDF proposal), Tim Berners-Lee proposed the first work

on exposing a relational database on the semantic web [10]. This document compares the

relational model with the RDF data model and also discusses mapping issues. However,

this mapping of relational data to RDF is rather basic, omitting completely, e.g., a concrete

schema representation.

A more complex proposal is in [7], where the authors describe a näıve approach for map-

ping RDBMS data onto RDF data. The proposal covers concept naming, relationships,

datatypes and other problems. However, the work is still mainly on the level of the RDF

data model and not on the level of schema mapping.

2.3.3 RDF gateways to relational databases

SquirrelRDF [89] is a tool which allows relational databases to be queried using SPARQL

[79]. It is just an implementation of the näıve RDB to RDF mapping, described in [7], thus

an ontology is not considered. When mapping is created, RDB can be queried by SPARQL

[79]. A result of the SPARQL query over RDB can be RDF (in case a CONSTRUCT query

is used). The SquirrelRDF uses Jena [22] API to perform SPARQL queries.

The work proposed in [64] extends the näıve approach, focusing on linking relational and

RDFS schemata. The system called FDR2 is designed for integration of relational-like

information resources with RDFS-aware systems by linking a relational database schema

with a predefined domain ontology. This approach describes a relational schema (all of its

concepts and relationships) by RDFS and uses this description to join relational schema

and given ontology. The system requires an RDFS reasoner to process the mapping, which

poses a serious performance problem. Moreover, the work does not solve the problem of

data transformation – it is designed to allow querying a relational database by concepts

from a predefined domain ontology.

An approach very similar to the previous one is DartGrid, proposed in [23], which should

provide a web-scale integration infrastructure for distributed relational database resources.

The integration platform uses RDF/OWL to define mediated schemas, thus there is a

need to transform relational data into RDF according to existing OWL ontology. In this

process, first the database semantic is described by RDF/OWL using a set of predefined

CHAPTER 2. BACKGROUND AND STATE OF THE ART 20

rules. This source data semantic is later mapped into a shared ontology in order to allow

semantic querying of the database. For this querying, the authors developed their own

query language called Q3. The mapping approach has the same structure as the previous

one, although it provides more sophisticated mapping according to use of OWL, and also

suffers from the same drawbacks.

Another contribution in this group discussed in this document is Federate [78], which is

designed to provide a consistent RDF interface to relational databases. The approach uses

RDF agents with the ability to query a relational database with an application-specific

schema. First the very simple mapping is created between relational database schema and

ontology concepts and then a database is queried by an RDF query language. The query

is translated to SQL in accordance with the mapping. However, returned data are in the

form of a relation.

Very recent approach to DB to RDF migration is R2DQ [85]. This work introduces D2R, a

declarative language to describe mappings between relational database schemas and OWL

ontologies. The mapping process consists of 4 steps: (i) selection of a record set from

the database using SQL, (ii) grouping of the record sets, (iii) creation of class instances

and identifier construction and (iv) mapping of the grouped record set data to instance

properties. The mapping is used by a processor that transforms relational data into RDF,

emitting RDF/XML [5], N3 [13] or N-Triples [4]. The processor is based on JENA API

[22]. In the last version (0.5) a database can be queried by SPARQL.

2.3.4 Relational database to RDF transformers

The work described in [91] introduces the system called KAON REVERSE, which is in-

tended to be a plug-in to the large semantic web framework KAON [16]. Using this

system, data from a relational database are transformed into a RDF knowledge base based

on mapping of a logical database schema into an existing ontology. The approach starts

with transforming the relational database model into a corresponding ontological struc-

ture based on F-Logic, which is then used for mapping the content of the database into an

RDF knowledge base. This knowledge base can be queried by RDF query languages and

resulting RDF statements can be published on the web. When mapping is created from

this approach, the final layout of produced RDF is also defined.

Another work on relational database to RDF transformation is a part of the project Mu-

seumFinnland [57]. This approach is focused mainly on interoperability between different

CHAPTER 2. BACKGROUND AND STATE OF THE ART 21

database maintainers. In [80] a two-phase data transformation is described. A database

content is transformed into XML repository conforming to an XML Schema. These XML

data are then transformed into RDF metadata that are semantically validated against a set

of predefined RDFS ontologies. The whole relational database is migrated into RDF with-

out any possibility of transformation control. This approach uses a conceptual database

schema for mapping.

D2RQ [85], mentioned in the previous subsection, also belongs in this category. In its early

version (in 2004), it was just a system exporting data from a relational database into RDF.

We can summarise that all approaches discussed above use some RDF API to handle RDF

data and ontologies and that the layout of produced RDF is rather static.

CHAPTER 3. OVERVIEW OF OUR APPROACH 22

3 Overview of our approach

3.1 Definitions and terminology

This section introduces some basic terms used in this document. It should be noted that

some concepts from our research area are addressed by different terms in various works. In

such case we choose one term and define it here. However, this chapter gives only a brief

overview to the terms. Their formal definitions are in the following sections.

Since the work is focused on data transformation, we should explain general terms such as

schema formalism, schema, data and database.

The term data will denote a digital representation of atomic facts. However, the word is

often used as plural (e.g. relational data). In that case the term simply denotes digital

representations of facts. A database is a structured set of data. It can be a relational

database, an XML document or a simple file. A schema defines the structure of a database.

Thus data can be expressed by a set of concepts and their relationships provided by schema.

An example for a schema is a relational database schema, where relations and attributes

define a structure for data. The way a schema describes a data structure is defined by a

schema formalism. Every formalism defines a limited set of terms and relationships that can

be used to describe a schema. For instance, a relational database schema is a representation

of the formalism called the relational model. A schema is based on a particular schema

formalism, which can be described using some schema formalism language.

The meaning of data will be addressed as semantics. If semantics is expressed directly by

data and their structure, it will be called explicit semantics.

In the semantic web the term metadata is very common. In this context metadata means

data represented in machine-understandable fashion [34]. This means that metadata has

explicit semantics. Terms, their relationships and other rules for metadata are defined

by an ontology. A particular ontology is a schema, used ontology language is a schema

formalism (language). More specifically, the current semantic web technologies are RDF,

RDFS and OWL. RDF provides a simple data model to express metadata while RDFS and

OWL are ontology languages. Although RDF can be seen as a sort of schema formalism,

in this work we understand RDF as a data serialisation format and RDFS as a schema

formalism (and also as a schema formalism language). Then a particular RDFS ontology

is a schema and an RDF document is a database.

CHAPTER 3. OVERVIEW OF OUR APPROACH 23

A relational model is one schema formalism in the relational database world. In this

model, data are stored in so-called relations (or tables), which are defined by a relation

schema. A set of relation schemas creates a relational database schema, which is generally

a schema for data. The term relational database (RDB) corresponds with the more gen-

eral database. Another common term, RDBMS (relational database management system),

denotes a software system that manages relational databases. Neither relational data nor

relational model do not express their semantics explicitly.

A note should be made on the terms relation and relationship. Since relation is a term for

the particular data structure (a table) in the relational database world, we decided to use

the word relationship to express two things that relate to each other.

3.2 Topic overview

As described in the introduction, the area of our interest is the semantic web, and more

specifically, a dynamic generation of the semantic web content. When investigating our

research area and its problems, we identified the following points:

- A large part of the web content is generated from relational data stored in RDBMSes.

It is not possible to give an exact ratio of dynamic to static web pages, but some

sources (e.g. [48]) claim dynamic web pages outnumber static ones 100 to 1.

- The semantic web standards (RDF – Resource Description Framework [5], RDF-

Schema (RDFS) [17] and OWL – Web Ontology Language [88]) are already deployed.

- The semantic web technology is considered to be complex and complicated by people

outside the semantic web community.

Considering these facts, we specified our goals as follows. We propose a system that

generates semantic metadata directly from a relational database. This production is based

on the schema mapping between a relational database schema and ontology.

Since our research is focused on the semantic web, our proposal addresses particular se-

mantic web technologies. The format of produced metadata is RDF (Resource Description

Framework [5]) and the format of ontology language is RDFS (RDF-Schema [17]). We also

aim to support OWL [88].

CHAPTER 3. OVERVIEW OF OUR APPROACH 24

Regarding the problem of complexity of semantic web technologies, we execute a strong

effort to design a data transformation model that is usable even for web developers without

a deep knowledge of RDF and RDFS.

3.3 Partial goals

There are several additional aspects that can be seen as partial goals of our research. These

aspects, influencing the design of both theoretical models and their implementation, are

briefly detailed in the following subsections.

3.3.1 Data transformation

The main purpose of our work is to enable transformation of relational data into an RDF

document. The transformation is based on a mapping between a relational database

schema and ontology. We can say that input for our transformation are relational data

in a database, an output is an RDF document, and the transformation is restricted by

constraints in a particular database schema and ontology.

However, database data and RDF documents differ not only in their serialisation formats

or the methods of access. The most significant difference is in the underlying data models

the relational data model on one side and the RDF-directed labeled graph on the other.

Our goal is to create a complete formal mapping between these two data models while

also considering other restrictions, e.g. the RDFS language capacity. Moreover, the data

transformation model design is influenced by its purpose and also by other goals, primarily,

performance and usability.

3.3.2 Performance

The speed of the RDF production is another limiting factor for us. The architecture and

algorithms of our model must be efficient from this point of view – our goal is to make an

RDF production time-efficient.

When processing an RDF document with a computer, it is usually transformed into a

document object model (DOM) using some RDF API (e.g. Jena2 [22]). However, building

large RDF files with a particular ontology with an RDF API can be very time- and memory-

CHAPTER 3. OVERVIEW OF OUR APPROACH 25

consuming processes.

We argue that using full-scale RDF API is a bottle-neck of the data transformation. We

believe that finding an algorithm that does not use it will improve the performance of this

process.

3.3.3 Usability

The abstract model is designed to be a base for an implementation of the data trans-

formation system. This system is intended to be a tool to simplify a semantic metadata

production. To achieve this goal, a complexity of semantic web technologies must be hidden

from web developers who use the data transformation application.

We have kept this idea in mind since the very beginning of our work. Not only a system

implementation, but also the model architecture and developed XML languages must be

designed in order to achieve this goal. We can see an aspect of usability in the following

criteria:

- The data transformation model is designed to hide the complexity of the semantic

web technology from web developers.

- The data transformation languages are as simple as possible, and are easy to under-

stand and use.

- The framework architecture and implementation are designed to make the framework

easily adaptable in the current web development process.

3.4 Formal goal specification

The main goal of our research – a transformation of relational data into RDF documents

– is formally specified in this subsection. In this work we deal with two particular schema

formalisms (a relational model and RDFS ontology language) but the problem is specified

generally here. The following formal definitions are inspired by [2]

Definition 3.4.1 (Schema) The schema S is a structure consisting of concepts, their

relationships, and restrictions:

CHAPTER 3. OVERVIEW OF OUR APPROACH 26

S = (CON, REL, RES)

where

- CON is a set of concepts,

- REL is a set of relationships between concepts,

- RES is a set of restrictions.

There are various ways to practically represent a schema – e.g. a relational model, ER

model, object-oriented model, directed graph and so on. We will address them as schema

formalisms.

Every formalism defines a limited set of terms, relationships, and restrictions that can be

used to describe a schema. For example, there can be terms such as a class or entity

and relationships like subclassOf or is-a.

Definition 3.4.2 (Schema formalism) Schema formalism φ is a triple

φ = (Cφ, Rφ, Sφ)

where

- Cφ is a set of formalism concepts,

- Rφ is a set of formalism relationships,

- Sφ is a set of structural restrictions on relationships between concepts.

If we apply this definition, for instance, to the relational model, the formalism concepts

are relation schemas and their attributes; relationships between relations can be expressed

by primary and foreign keys and restrictions are defined by integrity constraints. It is

very similar for other formalisms. This issue is discussed more in sections 4.2.1 (for the

relational model) and 4.2.3 (for the RDFS). Table 3.1 shows an example of two different

schemas, S1 and S2, that describes the same domain. S1 is an instance of relational schema

and S2 is a hierarchy of classes and properties in an (RDFS) ontology.

Data representing schema concepts can be referred to as instances of schema concepts and

a set of such data structured in accordance with a particular schema is a database.

CHAPTER 3. OVERVIEW OF OUR APPROACH 27

S1 concepts S2 concepts
Person Thing

#id Being::Thing
username Person::Being
first name firstName
last name lastName

Table 3.1: Schema sample

Definition 3.4.3 (Instance) The instance I is data representing a concept from the

schema S and conforming to the schema.

Definition 3.4.4 (Database) The database D is a set of instances that conform to the

schema S and satisfy all constraints in S.

A database can be a relational database stored in RDBMS (as a set of instances conforming

a particular relational database schema) or an RDF document as a set of statements.

Since we defined the main terms in our research area, we can now formally define the goal

of our work. Our goal is to design a mapping model that performs a data transformation,

defined as follows:

Definition 3.4.5 (Data transformation) Data transformation is an operation ts,t, which

is able to create a target database Dt conforming to a schema St from data stored in a source

database Ds conforming a schema Ss.

ts,t : (Ds → Dt) | Ds conforms Ss, Dt conforms St

3.5 Goal summary

To summarise the main goal of our research, we will design a novel model for transforming

relational data into RDF documents. The data migration is based on a mapping between

a relational database schema and RDFS ontology. The models architecture is intended to

be the base for an implementation of a high-performance data transformation system that

is easy to use by web application developers.

CHAPTER 3. OVERVIEW OF OUR APPROACH 28

Proposed data transformation would allow the publication of relational data

without explicit semantics as an RDF data with explicit semantics defined by

an ontology.

3.6 Methodology of the work

It can be said that RDF is a very simple data format based on an expressive and scalable

data model. An advantage of RDF is that metadata can be enriched by rules expressed by

higher ontology languages (RDFS, OWL, and so on). We reason that data transformation

from RDB to RDF can be also very simple even when mapping between relational schema

and RDFS ontology is considered.

Other approaches, described in Section 2.3 are generally (i) too simple (e.g. based on näıve

approach, which doesn’t consider any ontology [89]) or (ii) too complicated (e.g. based

on some kind of logic, which is not necessary for this task [16]). One approach (R2DQ

[85]) has a similar principle to our work but differs in the data transformation model and

query interface and thus is designed for a slightly different purpose. Moreover, due to its

architecture, it features significantly lower performance than our system.

When considering related work and our goals, we decided to keep our work as simple as

possible, but no simpler. The methodology of this thesis follows this principle.

3.6.1 Formal model and derived languages

All formal issues considering RDBs are based on relational model and algebra. RDF and

RDFS formalisation in this thesis is based on an RDF algebra introduced in [40].

The work on the formal model was as follows:

1. The process of data transformation was divided into two parts: (i) schema mapping

(creating a mapping between a particular relational database schema and an RDFS

ontology) and (ii) instance transformation (transforming relational data into RDF

documents according to the mapping). Thus the data transformation model has two

parts: schema mapping layer and template layer (see the design rationale in 4.4).

2. The work on the schema mapping layer required:

- Identification of corresponding parts of relational schema and RDFS.

CHAPTER 3. OVERVIEW OF OUR APPROACH 29

- Design of a model capable of mapping corresponding concepts from both for-

malisms.

3. The template layer is for querying RDB by means of RDF. We used a common

approach called query translation to translate our queries to SQL but we designed

a unique query interface in the template layer. Our query has the form of an RDF

graph and this graph defines not only the content of a resulting RDF document but

also its structure. We can say that our template layer is an RDF view to a relational

database.

4. We proposed two declarative XML languages based on the formal model. One lan-

guage is capable of describing schema mapping between relational schema and RDFS

and the other is for building RDF documents from relational database. Reasons for

choosing XML serialisation syntax are discussed in Section 5.2.

5. We evaluated the completeness of our formal proposal in the following way:

- Relational completeness of our model was verified using Elsmasri’s and Na-

vathe’s [72] approach – we proved that the minimal set {σ, π,×,∪,−} of rela-

tional operators is complete.

- RDFS completeness was evaluated by enumerating of all supported RDFS fea-

tures.

- When considering RDF completeness first the support for the RDF data model

was formally proven and then all other supported RDF features were enumer-

ated.

3.6.2 Data transformation system implementation

We defined two partial goals regarding the implementation: usability and performance.

Both are discussed in detail in Chapter 7.

1. Usability is guaranteed by the two-layer design which conforms to roles in web de-

velopment and by a simple user interface (template layer) that hides complexity of

semantic web technologies from a user.

2. Our data transformation system is designed as a stream processor - it neither creates a

whole resulting RDF model in a memory nor uses any extensive programming library

CHAPTER 3. OVERVIEW OF OUR APPROACH 30

for RDF manipulation. This novel approach in the field brings high performance as

showed in the experimental evaluation.

3.6.3 Experimental evaluation

To compare our approach with others and to prove our concepts, we executed an extensive

performance analysis, for which the methodology is described in Chapter 8.

3.6.4 Experimental deployment

We deployed the implemented system in several case studies to test it in a practical envi-

ronment. The case studies (discussed in Section) informally proved the usability of our

approach. We also used the studies to create an experimental RDF knowledge domain for

our continued research.

CHAPTER 4. DATA TRANSFORMATION MODEL 31

4 Data transformation model

In this chapter we detail and discuss the abstract data transformation architecture and the

formal description of the data transformation model.

4.1 Problem specification

As discussed in Chapter 3, the goal of this work is to enable a transformation of relational

data into an RDF document. The transformation is based on a mapping that maps a

relational database schema into an RDFS ontology.

The transformation of data from a relational database to an RDF document based on

schema mapping is depicted in Figure 4.1.

z

Person

+Name

+Age

Project

+Name

+Type

+Homepage

Ontology

<person>

 <hasName/>

 <hasProject/>

</person>

RBDMS

 RDF

Schema

mapping

Instance
transformation

Figure 4.1: Data transformation schema

To be more specific about schema formalisms and data formats in Figure 4.1, we propose

following points:

- a schema formalism for a source schema is the relational model,

- source data are stored in an RDBMS,

- a schema formalism for a target schema (i.e. for an ontology) is RDFS, and

- target data are stored in an RDF document.

CHAPTER 4. DATA TRANSFORMATION MODEL 32

4.2 Formal definitions

The transformation process discussed in the previous section has two steps:

1. Creating a mapping between a particular relational database schema and an RDFS

ontology.

2. Transforming relational data into RDF documents according to the mapping from

the first step.

Generally we can identify the two different problems that we will address as: (i) schema

mapping and (ii) instance transformation.

Schema mapping takes two schemas from the same knowledge domain as input and pro-

duces a mapping between elements of the schemas that correspond ”semantically” to each

other.

Instance transformation describes queries that transform values from a data source into

a different fixed target data in accordance with the previously defined mapping between

schemas.

The following definitions describe these terms more formally.

Definition 4.2.1 (Schema mapping) Given a source schema Ss = (CONs, RELs, RESs)

and a target schema St = (CONt, RELt, RESt) describing one knowledge domain. The

schema mapping M is a set of mapping elements each of which indicates that certain con-

cepts or relationships of schema Ss relate to certain concepts or relationships in St.

M = (Ec(cs → ct), Er(rs → rt) | cs ∈ CONs, rs ∈ RELs, ct ∈ CONt, rt ∈ RELt)

where

- Ec is a set of mapping elements between concepts,

- Er is a set of mapping elements between relationships

and mapping elements are created in accordance with restrictions from RESs and RESt.

CHAPTER 4. DATA TRANSFORMATION MODEL 33

For example, a mapping between S1 and S2 (in the example from Section 3.4) could contain

a mapping element joining the concept Person.first name with the concept firstName,

which is a property of the class Person. To define the term mapping element generally, we

can say:

Definition 4.2.2 (Mapping element) Given a source schema Ss and a target schema

St. The mapping element e is a construct that refers to a particular concept or relationship

from Ss and to a corresponding concept or relationship from St.

e = (refs, reft)

where

- refs is a reference to a concept or relationship from a schema Ss,

- reft is a reference to a concept or relationship from a schema St.

Definition 4.2.3 (Instance transformation) Given a source schema Ss, target schema

St and source database Ds that conforms the schema Ss. A mapping M is established

between Ss and St.

The instance transformation T is a set of queries Q based on M over the Ds so that they

create a target database Dt that conforms to a schema St.

Until this point all formal definitions were written in a general fashion using terms such

as a schema formalism, schema or database. Since our work uses particular schemas

and data formats (see the list in Section 4.1) the following formal descriptions of our

data transformation model will reflect these formalisms, which are defined in the following

sections.

4.2.1 Relational model

In the relational model [25], data are organised in relations (sometimes called tables).

Definition 4.2.4 (Relation) A relation r over a collection of sets (domain values)

D1, D2, ... Dn is a subset of the Cartesian Product D1 × D2 × ... × Dn.

Thus, a relation is a set of n–tuples (d1, d2, ..., dn), where di ∈ Di.

CHAPTER 4. DATA TRANSFORMATION MODEL 34

A name and structure of a relation is specified by a relation schema.

Definition 4.2.5 (Relation schema) Let A1, A2, ... An be attributes with domains D1, D2, ... Dn

then R(A1 : D1, A2 : D2, ... An : Dn) is a relation schema.

And finally we can define a relational database schema.

Definition 4.2.6 (Relational database schema) A collection of relation schemas is

called a relational database schema.

When comparing described relational model to our schema formalism definition (definition

3.4.2), we can see some common points: (i) relation schemas and their attributes are

concepts; (ii) from relation schema definition we can identify relationships between relation

schema and its attributes, moreover, relationships between relations can be expressed by

primary and foreign keys; (iii) restrictions are defined by integrity constraints.

Relational algebra [26] is a procedural language developed to perform operations on the

relational model. Queries in relational algebra are applied to relations and the result of a

query is a relation. The minimal set of relational algebra operators is: selection, projection,

cartesian product, set-union, and set-difference ({σ, π,×,∪,−}). The operators take one

or two relations as input and give a new relation as a result – the relational algebra is

”closed”.

4.2.2 RDF data model

The RDF data model [70] is based on the directed labelled graph (DLG), even it differs

slightly from DLG because multiple edges between two nodes are allowed and node labels

must be unique. The graph consists of nodes that represent resources or literals (strings)

and edges that represents properties. Nodes representing resources can be identified by

URI or can be blank nodes.

We identify the following sets in RDF data model (from RAL, RDF algebra [40]): R (set

of resources), U (set of URI references), B (set of blank nodes), L (set of literals), and P

(set of properties). At RDF level the following holds for these sets: R = U ∪ B, P ⊂ R

and U, B, and L are pair-wise disjoint.

Using RDF we can make assertions (or statements in RDF terminology) about resources.

The statement consists of: subject, predicate, and object. Consisting of three parts, the

CHAPTER 4. DATA TRANSFORMATION MODEL 35

statement is sometimes called a triple. The subject and object are nodes of the graph, and

the predicate is an arc (see Figure 4.2). The subject is a resource being described by the

statement, the predicate is a specific property of the subject and the object is a value of

the property.

To be more formal (according to [63]):

Definition 4.2.7 (RDF triple) An RDF triple contains three components:

- the subject, which is a resource (an RDF URI reference or a blank node),

- the predicate, which is an RDF URI reference (a property label)

- the object, which is a resource (an RDF URI reference or blank node) or a literal.

An RDF triple is conventionally written in the order of subject, predicate, then object.

When considering RDFS ontology (see the next section) as a schema for an RDF document,

resources are instances of ontology classes and predicates are links to ontology properties.

Simple RDF assertions are depicted in Figure 4.2. RDF statements from the picture are

based on ontology from Listing 5.1. Ellipses represent URI-identified resources, rectangles

are literals and arcs are URI-identified predicates.

Figure 4.2: RDF graph example

URI of Person

URI of Project

http://www.cgg.cvut.cz/~svihlm1/metamorphoses

Svihla

http://www.sample.com/myontology/surname

http://www.sample.com/myontology/currentProject

http://www.sample.com/myontology/homePage

Definition 4.2.8 (RDF model (document)) An RDF model M is a finite set of RDF

triples.

CHAPTER 4. DATA TRANSFORMATION MODEL 36

M ⊂ R× U × (R ∪ L)

Graph representation of RDF models can be formalised as follos [40]:

Definition 4.2.9 (RDF graph model) A graph representing RDF model M is:

G = (N, E, lN , lE)

where

- lN = N → R ∪ L,

- lE = E → P ,

- N and E denotes nodes and edges, lN and lE their labels.

Following this graph representation, we can also specify basic properties for the nodes and

edges [40].

As described in Table 4.1 each node has three basic properties. The id of a node represents

the (identification) label associated with it. The nodes from the subset of resources that

represent the blank nodes do not have an id associated with them. There are two types of

nodes: rdfs:Resource and rdfs:Literal. The nodeId provides the unique internal identifier

of each node in the graph. nodeId has the same value as id for the nodes that have a

label, but in addition it gives a unique identifier to the blank nodes. The internal identifier

nodeId is not available for external use, i.e. it is not disclosed for querying.

Basic property Resource u ∈ U Resource u ∈ B Literal l ∈ L
id lN(u) - lN(l)
type rdfs:Resource rdfs:Resource rdfs:Literal
nodeId internal id internal id internal id

Table 4.1: Node basic properties

Each edge has three basic properties as described in Table 4.2. Compared with nodes,

which have unique identifiers, edges have a name (label), which may be not unique. There

can be several edges sharing the same name but connecting different pairs of vertices. The

name of an edge is (lexically) identified with the id of the resource corresponding to the

CHAPTER 4. DATA TRANSFORMATION MODEL 37

Basic property Edge e from r ∈ R to o ∈ R ∪ L
name lE(e)
subject r
object o

Table 4.2: Edge basic properties

property associated with the edge. The subject of an edge provides the resource node from

which the edge is starting. The object returns the resource or literal node to where the

edge ends, i.e. the value of the property.

The previous text is a short introduction to RDF data model necessary for this work. RDF

specification defines some additional features for RDF as containers, collections or reifica-

tion, but all of them are based on the data model described above. Complete specification

of the RDF model is in [65] or [63]. Moreover, an algebra for RDF data model called RAL

is proposed in [40] – some definitions in this section come from this proposal.

An RDF document can be serialised using several formats. The most common are

RDF/XML [5], N3 [13], NTRIPLES [4], TRIX [76], and Turtle [6]. The RDF/XML is

serialisation syntax based on XML. Since XML is very common syntax for sharing data

on the web, we use RDF/XML for resulting RDF documents. The sample RDF/XML

document is available in Listing 5.12.

4.2.3 RDF Schema (RDFS)

RDF Schema (RDFS) [17] provides a modelling language on top of RDF. It adds

new modelling primitives as RDF resources with additional semantics. However, an

RDFS model can be handled as a plain RDF model. Basic RDFS primitives are

the following: rdfs:Resource, rdfs:Class, rdfs:Literal, rdf:Property, rdf:type,

rdfs:subClassOf, rdfs:subPropertyOf, rdfs:subClassOf, rdfs:domain and rdfs:range.

Their relationships are depicted in Figure 4.3.

Every resource with property rdf:type equal to rdfs:Class is a class in a RDFS ontology.

Every resource with property rdf:type equal to rdf:Property is a property in a RDFS

ontology.

To define RDFS regarding our general definition for a schema formalism (definition 3.4.2),

we can say:

CHAPTER 4. DATA TRANSFORMATION MODEL 38

rdfs:Resource

rdf:Property

rdfs:Literal

rdfs:Class

rdfs:range

rdfs:domain

rdf:type rdfs:subClassOf

rdfs:subPropertyOf

rdfs:subClassOf

rdf:type

Figure 4.3: RDFS primitives

Definition 4.2.10 (RDFS formalism) RDFS formalism φRDFS is a triple of sets of

concepts, relationships and restrictions

φRDFS = (CRDFS , RRDFS, SRDFS)

where

- CRDFS = {rdfs:Resource, rdfs:Class, rdfs:Literal, rdf:Property},

- RRDFS = {rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range},

- SRDFS = {}

RDFS formalism provides no primitives for setting constraints on (RDF) data instances.

Support for such declarations is provided by richer ontology languages such as OWL (see

Section 4.2.4).

A sample of RDFS ontology can be found in Listing 5.1 (Chapter 5).

4.2.4 OWL (Web Ontology Language)

OWL (Web Ontology Language) [88] currently holds the highest position of ontology for-

malisms for the semantic web. It is based on RDFS (see the previos section), which is an

extension of the RDF. It introduces constructs for an ontology definition: classes, prop-

erties, literals, resources, corresponding relationships and restrictions. OWL has three

CHAPTER 4. DATA TRANSFORMATION MODEL 39

sub-languages with different expressive and inference power: OWL Full, OWL DL, and

OWL Lite.

The formal definition of OWL language, based on definition 3.4.2, follows bellow. It does

not describe all concepts and relationships available in OWL because the list, available in

[31], is rather long. However, we can provide an overview of OWL features.

Definition 4.2.11 (OWL formalism) OWL formalism φOWL is a triple of sets of con-

cepts, relationships and restrictions

φOWL = (COWL , ROWL, SOWL)

where

- COWL = {owl:Class, owl:Thing, owl:ObjectProperty, owl:DatatypeProperty,

owl:TransitiveProperty, owl:SymmetricProperty...}

- ROWL = {owl:equivalentClass, owl:equivalentProperty, owl:inverseOf,

owl:disjointWith, owl:intersectionOf,...}

- SOWL is set of restrictions that can be expressed by using built-in OWL primitives

as owl:Restriction, owl:FunctionalProperty,

owl:InverseFunctionalProperty, owl:maxCardinality, owl:minCardinality, owl:cardinality,

owl:allValuesFrom, owl:someValuesFrom or owl:hasValue

The OWL is not the main schema formalism in our work – we rather focus on RDFS

as a basic ontology formalism above RDF. However, some OWL features are naturally

supported by our data transformation model, which is designed to be extensible to OWL

in the future (see the future work Section 10.3).

The OWL support is discussed in Section 6.4 and summarised in the appendix B.

4.3 Discussion on used formalisms and data formats

This work focuses on the transformation of relational data into RDF (as detailed in 4.1).

The formalisms for these data formats are relational model and RDFS. In this section we

discuss similarities between these formalisms and data formats and we identify correspond-

ing structures.

The way we map these structures together will be detailed later in Section 4.4.

CHAPTER 4. DATA TRANSFORMATION MODEL 40

4.3.1 Schema mapping

There are two basic elements in the RDFS formalism (see Section 4.2.3): rdfs:Class

and rdf:Property. All ontology classes have the type (rdf:type) of the former and all

properties have the type of the latter. These classes and properties form concepts and their

relationships in RDFS ontologies. Properties naturally belongs to classes; we can see the

class as a abstract concept that holds a set of properties.

In the same manner we can identify two similar concepts in the relational model: relation

schema and attribute. By its definition (4.2.5) the relation schema is a set of attributes.

Using this similarity, we can say that

Definition 4.3.1 (Schema correspondence) having relational database schema and RDFS

ontology, it holds

- a relation schema corresponds to a class in an RDFS ontology and

- an attribute in a relation schema corresponds to a property in an RDFS ontology.

Thus, when building schema mapping (definition 4.2.1) we can use mapping elements

(definition 4.2.2) to map ontology classes to corresponding relation schemata and to map

ontology properties to corresponding attributes.

Of course, one particular class in a particular ontology does not have to correspond with one

particular relation schema in a particular relational database. For example, the attributes

corresponding to properties of one particular class could be distributed over many relation

schemata. However, using relational algebra operators we can identify subset of relational

database schema and this subset will be a relation schema (see the following theorem

and its proof). This way we can map an ontology class to any corresponding part of the

relational database schema.

Theorem 4.3.1 Using relational algebra operators it is possible to identify any part of a

relational database schema as a relation schema.

Proof 4.3.1 (of theorem 4.3.1) Using definitions of relational model and algebra (Sec-

tion 4.2.1):

CHAPTER 4. DATA TRANSFORMATION MODEL 41

Relational model RDFS
Relation schema Ontology class
Attribute Ontology property
Relationship between relation schema (Implicit) relationship between class

and its attributes and property
Relationship between two relation schemata (Implicit) relationship between two classes

Table 4.3: Schema correspondences

1. The relational algebra operators take one or two relations as input and produce a new

relation as a result (relational algebra is closed).

2. Each relation has its relation schema.

3. The relational algebra operations can be combined.

Thus it holds that the relational algebra operators take one or two relation schemata as input

and produce a new relation schema as a result. By combining operations it is possible to

identify any part of a relational database schema as a relation schema, QED.

Consequences of this reasoning are detailed in Section 4.4.

Moreover, there are relationships in both schemas that correspond to each other. A rela-

tionship between a relation schema and its attributes is obvious in the relational model and

a very similar relationship between ontology class and ontology properties can be found in

RDFS. The former relationship is explicit: an attribute belongs to a relation schema. In

the latter case, classes and properties are not connected explicitly by RDFS specification.

However, this relationship can be modelled by the property rdfs:domain.

Another relationship is between two relation schemata in the relational model or two classes

in RDFS. The former case is often modelled by foreign keys, and the latter case can be

implicit or suggested by properties rdfs:domain and rdfs:range on a property connecting

the two classes.

The identified correspondences are summarised in Table 4.3. The issue of schema con-

straints is discussed in Section 4.5.3.

CHAPTER 4. DATA TRANSFORMATION MODEL 42

Relational model RDF
N-tuple (row) Resource
Attribute name Property
Attribute value Literal

Table 4.4: Data format correspondences

4.3.2 Instance transformation

Using the same logic we can examine relational data and RDF. A relational database

consists of relations, which consist of n-tuples or rows. Each row consists of a set of values.

The RDF model is a set of triples – each triple consists of a subject node (which is a

resource), a property edge, and an object node (which is a property value–a literal or

another resource). We can say that the property assigns its value to the resource in the

RDF triple. It is very similar in the relational model – the attribute assigns its value to

the row. The corresponding elements are described in Table 4.4.

This natural similarity is also described in the next theorem:

Definition 4.3.2 (Data model correspondences) Having relational model and RDF

data model it holds that:

- a row from a relation corresponds with an RDF resource,

- an attribute (column) name corresponds with an RDF property,

- an attribute value in the row corresponds with an RDF property value.

This correspondence is not new, it was presented very early in [10] and is also a base for

the so-called näıve approach in [7]. However, in both cases the schema for the RDF was

not considered and thus the näıve approach was merely an export of relational data to

RDF graph. We use this correspondence just as a starting point for further reasoning.

4.4 Design rationale

Following the two steps of a data transformation process proposed in Section 4.2, we divided

the data transformation model architecture into two separate parts: the schema mapping

layer and the template layer, as depicted in Figure 4.4.

CHAPTER 4. DATA TRANSFORMATION MODEL 43

Mapping Element
- relational concept
- ontology concept
- id

z

Person

+Name

+Age

Ontology

<person>

 <hasName/>

 <hasProject/>

</person>

RBDMS

 RDF

Template document

Template
layer

Mapping
layer

Figure 4.4: Data transformation architecture

In the schema mapping layer, which corresponds to the schema mapping process (definition

4.2.1), a relational schema is mapped into an ontology. This is done by mapping elements

that join relating parts of a database schema and ontology. A set of such elements creates

a schema mapping document, which can be described by schema mapping language. Each

mapping element has a unique id within a mapping document in order to be referenced

from the template layer.

The template layer corresponds with the instance transformation process (definition 4.2.3).

On this level references to mapping elements from the mapping layer are combined in order

to create a template document, which is a query for a transformation of relational data into

an RDF document.

This process is illustrated in Figure 4.4. Formal issues of the architecture are detailed in

the following subsections and the design and features of the languages are discussed in

Section 5.

4.5 Schema mapping layer

The schema mapping layer is a level of the schema mapping in our data transformation

model. Since we divided schema elements into three categories (concepts, relationships,

and constraints – see definition 3.4.1), in the following text we address these three areas

of mapping in turn.

CHAPTER 4. DATA TRANSFORMATION MODEL 44

4.5.1 Concept mapping

We identify two basic schema concepts: classes (relations in a relational schema or classes

in RDFS ontology) and properties (attributes in a relational schema or properties in RDFS

ontology). Thus we have two basic elements for concept mapping: (i) a mapping class and

(ii) a mapping property.

Mapping class

The mapping class connects an ontology class (an ontology concept) with a correspond-

ing subset of a relational database schema (a relational concept). An ontology class is

referenced by a full class name with namespace. A relational database schema subset is

referenced by the relational algebra operators.

Definition 4.5.1 (Mapping class) A mapping class Cm is a triple

Cm = (rs, co, id | rs ⊂ Ss, co ∈ Ot)

where

- rs is a relation schema – a subset of relational database schema – referenced by the

relational algebra operators,

- co is a referenced ontology class,

- Ss is a source relational database schema,

- Ot is a target ontology and

- id is a unique identifier of the mapping class Cm.

We argue that relational algebra operators are not only useful for fetching data from

relational database but can also serve as identifiers of relational concepts in a relational

database schema (see theorem 4.3.1). A relational algebra query returns a relation and

relation schema of this relation is a relational concept referenced by a mapping class.

This approach is illustrated in Figure 4.5. The (Equi) Join operation is used to intercon-

nect two relation schemas from a relational database creating one concept RelPerson (a

relationship between these relation schemas is 1:1 or 1:N; relationships M:N are discussed

elsewhere).

CHAPTER 4. DATA TRANSFORMATION MODEL 45

Mapping
class

Person

 #id

 name

 id_phone

Phone

 #id

 number

Ontology

<person>

 <hasName/>

 <hasPhone/>

</person>

JOIN

RelPerson

 #id

 name

 number

Relational
schema

Figure 4.5: Mapping class

Mapping property

A mapping property connects an ontology property with a corresponding relation schema

attribute.

A mapping property always belongs to a mapping class. Thus a relation schema attribute

belongs to a relation schema referenced by a mapping class and an ontology property may

belong to an ontology class referenced by a mapping class. This model follows the relational

model pattern, where attribute always belongs to the relation schema. This relationship

and its mapping is detailed in the next Section (4.5.2).

Definition 4.5.2 (Mapping property) There is a mapping class Cm connecting con-

cepts from a relational database schema Ss and an ontology Ot. A mapping property Pm

that belongs to Cm can be defined as:

Pm = (As, po, id | As ∈ rs, po is property of co)

where

- As is a referenced relation schema attribute,

- po is a referenced ontology property,

- rs is a relation schema from Ss referenced by Cm,

- co is a class from Ot referenced by Cm and

- id is a unique identifier of the mapping property Pm.

CHAPTER 4. DATA TRANSFORMATION MODEL 46

The reference to the relation schema attribute is optional in the mapping property. This

reflects the fact that property in RDF can have values both literal (the value of the relation

schema attribute) or resource (another mapping class instance). This is not distinguished

in RDFS but in OWL the properties are referred to as owl:datatypeProperty in the

former case and owl:objectProperty in the latter.

Thus we can say that:

Definition 4.5.3 (Datatype mapping property) Datatype mapping property is a map-

ping property with reference to the corresponding relation schema attribute.

and

Definition 4.5.4 (Object mapping property) Object mapping property is a mapping

property without reference to the corresponding relation schema attribute.

Mapping attribute

In RDF/XML syntax, RDF resources and properties can have attributes that describes

them. For example, the RDF attribute rdf:about specifies a resource URI and the at-

tribute rdf:datatype is in place to specify a datatype for a literal value of a property.

The mapping attribute element is to add RDF attributes to produced RDF resources or

properties on the template layer. The mapping attribute always belongs to a mapping

class or property. It consists of an RDF attribute name, relation schema attribute, and

additional text information. The combination of the latter two elements represent an RDF

attribute value.

Definition 4.5.5 (Mapping attribute) There is a mapping class Cm that refers to a

relation schema rs. A mapping attribute Am that belongs to Cm or to any of its mapping

properties can be defined as:

Am = (name,As, text | As ∈ rs)

where

- name is an RDF attribute name describing the mapping attribute,

- As is a referenced relation schema attribute,

CHAPTER 4. DATA TRANSFORMATION MODEL 47

- rs is a relation schema from Ss referenced by Cm,

- text is a source of an additional textual information.

4.5.2 Relationship mapping

A relationship between a relation schema and its attributes is obvious in the relational

model. A very similar relationship between ontology class and ontology properties can

be modelled by the property rdfs:domain (see Section 4.3.1 for details). To map this

relationship we simply link mapping properties to their corresponding mapping class; every

mapping property is assigned to some mapping class, as described in the definition 4.5.2.

The relationship between two relation schemata modelled by foreign keys in the relational

model can be mapped into the relationship between two classes in RDFS. In RDFS any

two classes can be in this relationship, however, it can be explicitly modelled by prop-

erties rdfs:domain and rdfs:range on a property connecting the two classes. To map

these corresponding relationships there is a mapping element called mapping condition that

connects two mapping classes. Each mapping condition belongs to some mapping class.

Definition 4.5.6 (Mapping condition) The mapping condition states that its parent

mapping class (C1
m) is in N:1 relation with some other mapping class (C2

m).

A connection between two classes is made by a relational algebra operation join, which

joins the two classes. Later, on the template layer, the mapping condition performs a select

operation on a relation from the C1
m, which results in selecting tuples that relates to the

C2
m.

N:M relationship is modelled by two 1:N relationships in the relational model and can be

expressed by a pair of mapping conditions – each in one of related mapping classes.

This abstract definition is practically described in Section 5.3.1.

Regarding RDFS we identified three RDFS primitives (in the definition 4.2.10): rdf:type,

rdfs:subClassOf, and rdfs:subPropertyOf, besides previously mentioned relationships.

All of these elements are to express relationships between instances, classes, and properties.

They have no counterpart in the relational model and thus we don’t map them. However,

they are integrated into our data transformation model. The first one, rdf:type, is used

in the template layer to assign an ontology class to an RDF instance. The other two are

CHAPTER 4. DATA TRANSFORMATION MODEL 48

ontology issues that form a base for RDFS reasoning. They can be a part of the resulting

RDF document since an ontology can be linked to the document.

4.5.3 Schema constraints

We assume that the relational database content conforms to the database schema con-

straints, which eliminates the need to consider these constraints in our mapping. On

the other hand, we have no RDFS primitives that create ontology constraints (definition

4.2.10), thus there are no ontology restrictions for resulting RDF documents. Because of

this, we do not consider schema constraints here.

The question of schema constraints is discussed in this work because we plan to extend our

model with the OWL formalism, which supports constraints (see Section 4.2.4 and 10.3).

Thus our schema formalism definition (3.4.2) and data transformation definition (3.4.5)

contain the schema constraint concept for future extensibility.

4.5.4 Mapping document

A set of mapping elements that express a mapping between a particular relational database

schema and an ontology is addressed as a mapping document.

Definition 4.5.7 (Mapping document) A mapping document is a set of mapping ele-

ments that map a source schema Ss to a target schema St, written in a particular mapping

language.

Practically, elements can be serialised using many different data models or languages. We

developed our own schema mapping language, based on XML. Details of this language are

proposed in Section 5.3.1, and an example of a mapping document can be found in the

Listing A.1.

4.6 Template layer

A template layer corresponds to the instance transformation. On this level a query is

passed to a relational database through the mapping layer. Returned data instances and

ontology elements from a mapping document are composed to a resulting RDF document.

CHAPTER 4. DATA TRANSFORMATION MODEL 49

The query has the form of a template document, which is a tree consisting of template

elements. Template elements are references to mapping elements from a particular map-

ping document. Referenced mapping elements translate the query to relational database

queries and data from returned relations are composed according to the template docu-

ment structure. This means that the template documents form a query but also specify a

structure of resulting data.

In the previous section we defined two concept mapping elements – (i) the mapping class

and (ii) mapping property. These mapping elements are referenced by two main tem-

plate elements: the former by template instance and the latter by template property. A

combination of these elements forms a template document.

Moreover, there are additional template elements that join relating classes (e.g. template

condition and template variable) and they will be discussed in Section 5.3.2.

Definition 4.6.1 (Template element) A template element is a parametrised reference

to a mapping element. The mandatory parameter of the template element is an identifier

of the particular mapping element.

A template document is a template for generation of an RDF document. It is a set of ref-

erences to mapping elements and thus it is always dependent on some mapping document.

This means that a resulting RDF document is based on a particular ontology and will be

generated from a particular relational database schema. From that point of view it can be

said that the template document is an abstract RDF document that can be instantioned

by particular data fetched from a relational database.

Definition 4.6.2 (Template document) A template document is a tree composed of

template elements that refer to a particular mapping document.

As mentioned above, a template document is a tree and its nodes are template instances

and properties. In order to create a valid query for mapping layer, we must define a set of

rules for the template document tree.

Definition 4.6.3 (Template document rules) The rules for creating a template docu-

ment tree are as follows:

CHAPTER 4. DATA TRANSFORMATION MODEL 50

- a document root can contain only template instance nodes,

- a template instance node can contain template property nodes

- a template property node referencing a mapping object property must contain a tem-

plate instance node

- a template property node referencing a mapping datatype property is a leaf

An example of a template document tree is depicted in Figure 4.6.

document root

surname

template instance

template property referencing a mapping object property

template property referencing a mapping datatype property

Person currentProject Project

Project participants Person

Figure 4.6: Example of a template document tree

During the data transformation, template elements are translated to RDF resources (nodes

of RDF graph) and RDF properties (edges of RDF graph). The entire transformation

process is described in the next section. The result of the data transformation based on

the template from Figure 4.6 can be, for instance, the RDF graph depicted in Figure 4.7.

literal (surname value)

resouce URI (type Project)
property URI (currentProject)

property URI (surname)

resouce URI (type Person)

property URI (participant)
resouce URI (type Person)resouce URI (type Project)

Figure 4.7: Sample of a resulting RDF graph

CHAPTER 4. DATA TRANSFORMATION MODEL 51

4.7 Putting both layers together

The schema mapping and template layer work together in order to enable the data transfor-

mation process. A mapping document joins concepts and relationships between a relational

database schema and RDFS ontology and addresses data instances in a relational database.

A template document refers the mapping document using template elements. Template

elements form a query for the schema mapping layer, which translates it to a relational

database query and fetches data from a RDB. These data and relating ontology concepts

are returned to the template layer where they are composed to a resulting RDF document.

The binding between both layers is depicted in Figure 4.8. Each template element in the

picture is connected to a particular ontology concept through its mapping element. On the

other hand, it can be also connected to related concepts from a relational database schema

and their data instances stored in a database. Since produced RDF elements are based on

template elements, they are created according to RDFS ontology and relational data.

Ontology

<person>

 <hasName/>

 <hasProject/>

</person>

Mapping class

Datatype mapping
property

Object mapping
property

Database

schema

Referenced

relation
relational
attribute

rdf:Property URI

rdfs:Class URI

Template instance

RDBMS

rdf:type value

rdf:Property URI

Template property

Template property

relational attribute value

Resulting

RDFrdf:Property URI,
rdf:Literal value

rdf:Property URI

schema mapping layer

template layer

data flow

reference

Figure 4.8: The binding between the schema mapping and template layer

A template instance passes rdf:type to each generated RDF resource from a referenced

mapping class. A template property can refer to a datatype or object mapping property.

In the former case, a property URI from ontology and the value of a corresponding literal

CHAPTER 4. DATA TRANSFORMATION MODEL 52

from a database are passed to a resulting RDF property. In the latter case only a property

URI is passed.

Moreover, any mapping class or property can contain a set of its mapping attributes

(attributes are not in Figure 4.8). These mapping attributes specify RDF attributes on

RDF resources or properties produced on the template layer. Since a mapping attribute

can contain reference to relational database schema, RDF attribute values can be generated

from the relational database. A URI for RDF resource or datatype of RDF property value

can be described this way.

The abstract process of the data transformation on the described model is detailed in the

following algorithm:

Algorithm 4.7.1 (Abstract data transformation process)

Input: mapping document M , template document T referencing M , relational database D

Output: RDF document

Step 1: parse T

Step 2: for each template element Et from T do

identify corresponding mapping element Em from M

create RDF element:

– assign RDF element name from RDFS ontology stored in M

– (if necessary) assign RDF element value from RDB referenced by M

end for

Step 3: compose created RDF elements into RDF graph according to the structure of T

Implementation details of this process are described in Chapter 7. Features of the resulting

RDF graph are discussed in the following section.

4.8 Discussion: result of the data transformation

The result of the data transformation should be an RDF document (graph), which conforms

a given RDFS ontology (from definition 3.4.5). This section investigates our model from

this perspective.

CHAPTER 4. DATA TRANSFORMATION MODEL 53

Theorem 4.8.1 The result of the data transformation can be an RDF document (graph)

based on a given ontology, when it holds:

1. an RDF triple can be composed (in the data transformation process),

2. a resulting RDF document can be a graph and

3. all produced RDF resources and properties can be typed by the corresponding RDFS

ontology.

To show that our model can produce RDF graph we will prove all partial conditions of the

theorem 4.8.1.

Proof 4.8.1 (that an RDF triple can be composed in our model.) According to def-

inition 4.2.7, an RDF triple consists of a subject (RDF resource), a predicate (URI refer-

ence), and an object (RDF resource or literal). RDF resource can be identified with URI,

otherwise it is a blank node.

1. The template layer can produce an RDF resource (an object of a triple) by a template

instance (Section 4.6) which refers to a mapping class (definition 4.5.1).

2. URI can be added to a RDF resource by assigning the mapping attribute (definition

4.5.5) to the mapping class.

3. A template property referencing a mapping property (definition 4.5.2) can be added

to the template instance – it creates RDF predicate with or without literal value

(definition 4.6.3, Figure 4.6)).

4. If a template property contains a literal value it creates an object of a triple (definition

4.6.3).

5. If a template property does not contain a literal value, another template instance can

be added to the template property and it will create its value – the object of a triple

(definition 4.6.3).

To sum up the enumerated points, it is possible to create a subject, a predicate, and an

object (both literal and resource) and resources can contain URI. Thus it holds that an

RDF triple can be composed in our data transformation model, QED.

CHAPTER 4. DATA TRANSFORMATION MODEL 54

Proof 4.8.2 (that a resulting RDF document can be a graph in our model.)

1. A template document is a tree (definition 4.6.2, Figure 4.6).

2. A resulting RDF document follows its tree structure of a template document (Section

4.6).

3. RDF resource nodes can be identified by URI (using a mapping attribute, definition

4.5.5).

4. In the case that two nodes have the same URI, they describes one RDF resource (from

RDF specification, [5]).

Because of the last point, a cycle can appear in the resulting RDF document and thus it

can be a graph, QED.

Figure 4.9 illustrates this possibility. The depicted RDF graph is based on the template

document from Figure 4.6.

literal (surname value)

resouce URI (type Project)
property URI (currentProject)

property URI (surname)

resouce URI (type Person)

property URI (participant)

Figure 4.9: Sample of a resulting RDF graph with cycle

The following reasoning is to prove that all produced RDF elements can linked to corre-

sponding ontology concepts in our model.

Proof 4.8.3 (Connection between resulting RDF and ontology) Regarding the bind-

ing between the template layer and RDFS ontology via the mapping layer (Section 4.7,

Figure 4.8) it holds:

1. an rdf:type value from the ontology can be assigned to a produced RDF resource,

CHAPTER 4. DATA TRANSFORMATION MODEL 55

2. URI reference can be assigned to a RDF predicate from the ontology.

This means that produced RDF resources or predicates can be linked to corresponding on-

tology classes and properties, QED.

Lemma 4.8.1 (based on the proof 4.8.3.) Since all elements of the resulting RDF

graph can be linked to RDFS ontology classes and properties, they are also bound to other

features from the ontology (e.g. subclass or subproperty hierarchy).

Proof 4.8.4 (of theorem 4.8.1) The proofs 4.8.1, 4.8.2 and 4.8.3 prove all partial con-

ditions of the theorem 4.8.1 considering our model. Thus, it holds that the result of our

data transformation can be an RDF document (graph) based on a given ontology, QED.

4.9 Summary

In this chapter we introduced the architecture of our data transformation model and de-

scribed all of its parts. We also showed how these parts together enable the data trans-

formation based on the schema mapping. Moreover, we proved that a result of the data

transformation is an RDF graph conforming to the RDFS ontology.

Returning to the formal goal of our work (definition 3.4.5), we intended to design a mapping

model to perform the operation of data transformation, which is able to create a target

database Dt conforming to a schema St from data stored in a source database Ds, which

conforms to a schema Ss.

ts,t : (Ds → Dt) | Ds conforms Ss, Dt conforms St

where Ss is relational database schema, St is an RDFS ontology, Ds is a relational database

and Dt should be a resulting RDF document.

The proposed two-layer data transformation model solves the mentioned problem. Input

for the mapping layer are a relational database schema (Ss) and RDFS ontology (St) and

its output is a mapping document. The template layer takes this mapping and relational

database (Ds) and produces an RDF document (Dt). Resulting Dt conforms St because it

is build on a mapping document referencing St.

The completeness of our approach according to used formalisms (relational model, RDF

and RDFS) is demonstrated in Chapter 6.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 56

5 Data transformation languages

To enable the schema mapping and data transformation described in the previous chapter,

we developed two XML languages – one for the schema mapping documents and another

for template documents.

This chapter describes informal semantics and syntax of both languages.

5.1 Running example

In the previous chapter, we discussed our model in such a general fashion that it was not

possible to illustrate the abstract theory with real examples. In this chapter, we describe

two XML languages that materialise our theoretical concepts.

Here we provide a base to the running example which will illustrate concepts described in

the further text. The complete mapping document for both schemas can be found in the

Appendix A.

Relational database schema

When referring to database schema in this chapter, we use such common terms as table,

column and row. In the running example we suppose a small database schema, consisting

of four tables (primary keys are marked by #):

PERSON(#id, id_department, username, first_name, family_name)

PROJECT(#id, web)

PERSON_PROJECT(person_id, project_id)

DEPARTMENT(#id, name)

The table DEPARTMENT is in 1:N relationship with the table PERSON, and the foreign key is

PERSON.id department. The tables PERSON and PROJECT have an M:N relationship, and

the table PERSON PROJECT is to join them.

RDFS ontology

The RDFS ontology that specifies a vocabulary for resulting RDF in our running example

is listed in 5.1.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 57

Listing 5.1: RDFS ontology sample

<rdfs:Class rdf:ID=" Person">
<rdfs:label >Person </rdfs:label >

</rdfs:Class >

<rdf:Property rdf:ID=" surname">
<rdfs:range rdf:resource ="http :// www.w3.org /2001/ XMLSchema#string" />
<rdfs:domain rdf:resource ="# Person"/>

</rdf:Property >

<rdf:Property rdf:ID=" hasDepartment">
<rdfs:range rdf:resource ="http :// www.w3.org /2001/ XMLSchema#string" />
<rdfs:domain rdf:resource ="# Person"/>

</rdf:Property >

<rdf:Property rdf:ID=" currentProject">
<rdfs:range rdf:resource ="# Project"/>
<rdfs:domain rdf:resource ="# Person"/>

</rdf:Property >

<rdfs:Class rdf:ID=" Project">
<rdfs:label >Project </rdfs:label >

</rdfs:Class >

<rdf:Property rdf:ID=" participants">
<rdfs:domain rdf:resource ="# Project"/>
<rdfs:range rdf:resource ="# Person"/>

</rdf:Property >

<rdf:Property rdf:ID=" homepage">
<rdfs:range rdf:resource ="http :// www.w3.org /2001/ XMLSchema#string" />

</rdf:Property >

The concepts from this ontology have no namespace prefix in the following examples.

5.2 Comment on syntax

The syntax of our mapping languages is XML. In the following list we provide some reasons

to choose an XML language:

- XML was developed to represent these kind of documents and it is very common in

the web community (and also in the semantic web community).

- An XML syntax can be analysed and processed using the Document Object Model

(DOM), which can be parsed and manipulated by a number of free and commercial

libraries, providing a good base for a mapping framework implementation.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 58

- An XML syntax is human readable – a human user can edit XML documents man-

ually.

- One serialisation format for RDF is XML (RDF/XML). If a template document is

a template for an RDF document, it is intuitive for a human user to build it as an

XML tree since RDF can also be imagined as a tree.

5.3 Language semantics overview (informative)

The mapping and template elements introduced in Chapter 4 are the base for our schema

mapping and template language. The semantics of the language primitives derived from

the formal model are detailed in this section.

5.3.1 Schema mapping language

Schema mapping language is used to describe the mapping between a database schema

and given ontology. It can describe elements, which map concepts of a database schema to

classes and properties of an ontology. These concept elements are later used in a template

layer. In addition to the concept mapping elements, there are control structures such as

conditions and variables, which define relations between concepts. These relationship ele-

ments are also used in a template layer and they control RDF production. Moreover, the

language contains a set of general elements for RDF creation. Their semantic is straight-

forward; they are not detailed here but only in the the language syntax Section (5.4).

In short, we can say that the schema mapping language is designed to:

- describe mapping elements between a database schema and structure of a given

ontology,

- enable control over these elements,

- store information for making a complete RDF document,

- establish connection with a specific relational database.

To reflect mapping class, property, condition and attribute proposed in Section 4.5 there

are language constructs Class, Property, Condition and Attribute. In addition, there

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 59

is the element Variable. The hierarchy of these elements is illustrated in Figure 5.1 and

their description follows.

Class

PropertyAttribute VariableClassCondition

element can be contained by...

Figure 5.1: Schema mapping language elements

Element Class (mapping class)

The mapping class is a basic element of the language to express a relationship between a

subset of RDB schema and corresponding ontology class. An ontology class is referenced by

a full class name with a namespace, and a relational database schema concept is referenced

by a SQL query. Using SQL we can address one or more database tables as one concept.

The second reason for choosing a SQL query on this level is because a template layer can

use it for fetching data from a particular relational database.

A mapping between the ontology class Person with the relevant concept from relational

schema can be expressed by the following mapping class:

Listing 5.2: Mapping class example

<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person
p, department d WHERE d.id = p.id_department" />

Attribute templateName defines a unique ID for the element, rdfLabel refers to an RDFS

ontology class, and sql specifies SQL query that addresses a relational concept corre-

sponding to the ontology class. In this particular SQL query a join operation is used to

interconnect more tables from a RDB schema creating one concept.

Element Property (mapping property)

The Property element always belongs to a Class element and joins an ontology Prop-

erty with a corresponding database column, which belongs to the table referenced by the

enveloping Class.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 60

Listing 5.3: Datatype mapping property example
<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person

p, department d WHERE d.id = p.id_department">
<Property templateName =" surname" rdfLabel =" surname" sqlName ="

family_name" />
</Class >

The Listing 5.3 describes a datatype mapping property (definition 4.5.3) with an ID surname

(in the attribute templateName), which interconnects an RDFS property surname (in the

attribute rdfLabel) with a database column family name (in the attribute sqlName).

An object mapping property (definition 4.5.4) can be described in a very similar way by

omitting an attribute sqlName (Listing 5.4), since object mapping properties do not refer

relational attributes.

Listing 5.4: Object mapping property example
<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person

p, department d WHERE d.id = p.id_department">
<Property templateName =" currentProject" rdfLabel =" currentProject" />

</Class >

Element Attribute (mapping attribute)

The element Attribute materialises an abstract mapping attribute from the definition

4.5.5. It can be contained by Class or Property and adds RDF attributes to them. An

Attribute element must contain an attribute rdfLabel that denotes the name of the

RDF attribute. The value of an RDF attribute can be specified by attributes prefix and

suffix that are literals and by a sqlName that refers to a database column similarly as in

the Property element.

Listing 5.5: Mapping attribute example
<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person

p, department d WHERE d.id = p.id_department">
<Attribute rdfLabel ="rdf:about"

prefix ="http :// webing.felk.cvut.cz/people /" sqlName =" username"/>
<Property templateName =" surname" rdfLabel =" surname"

sqlName =" family_name">
<Attribute rdfLabel ="rdf:datatype"

prefix ="http :// www.w3.org /2001/ XMLSchema#string"/>
</Property >

</Class >

The Listing 5.5 shows two Attribute elements. The first, contained directly by the Class

element, defines an RDF attribute rdf:about as URI reference for each RDF instance of

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 61

this mapping class. The URI (attribute value) will consist of prefix and value selected

from the username database column. The other one specifies datatype of the property by

adding rdf:datatype attribute to it.

Element ClassCondition (mapping condition)

The mapping element ClassCondition describes a relationship between two mapping

classes. A mapping condition always belongs to some mapping class and it can indicate

that its parent mapping class (further as C1
m) is in N:1 relation with some other mapping

class (further as C2
m).

In our running example, there are two concepts – Person and Project – by which a person

can undertake several projects. This is practically modelled by the relationship between

tables PERSON and PERSON PROJECT in the database schema.

Listing 5.6: Mapping condition example

<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person
p, department d WHERE d.id = p.id_department">
<ClassCondition templateName =" projectId" whereString ="p.id = pp.

person_id and pp.project_id =" tableString =" person_project pp" />
<ClassCondition templateName =" username" whereString ="p.username =" />

</Class >

The first element ClassCondition in Listing 5.6 models this relationship. Using attribute

tableString it adds table PERSON PROJECT to the parent mapping class SELECT query

then adds a condition to the query by attribute whereString. Applying this condition,

the resulting query is:

SELECT * FROM person p, department d, person project pp

WHERE d.id = p.id department AND p.id = pp.person id AND pp.project id =

The condition connects tables from both classes using a primary key of the C1
m with a

foreign key from C2
m and creates an opened condition, which can be completed later in

the template layer by employing Variable element from the class C2
m. Applying a such

mapping condition on the C1
m will result in selecting rows that relates to the C2

m.

Another way of using ClassCondition is when an attribute tableString is omitted. In

this case the query is

SELECT * FROM person p, department d

WHERE d.id = p.id department AND p.username =

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 62

and the query condition compares a primary key of C1
m with a literal. This way a template

layer can drive the instance production. Both samples are detailed more in Section 5.3.2.

Element Variable

The Variable element is to expose a single value from an enveloping mapping class. This

is used later in the template document in order to connect instances from different mapping

classes. The sample of Variable element is in Listing 5.7, and its further semantics and

usage is discussed in Section 5.3.2.

Listing 5.7: Mapping variable example

<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person
p, department d WHERE d.id = p.id_department">
<Variable templateName =" personIdVariable" sqlName ="p.id"/>

</Class >

5.3.2 Template language

To serialise a template document we developed our own template language, based on XML.

The template language contains a small set of elements: PutInstance, PutProperty,

Condition and Variable (their hierarchy is depicted in Figure 5.2). They reflect abstract

template layer concepts defined in Section 4.6.

PutInstance materialises the template instance concept, PutProperty is for the template

property. These two elements can be composed to a tree-based template document in order

to create a template for an RDF document.

Condition and Variable reflect the template condition and template variable. They can

be added to a PutInstance node and they drive a production of RDF instances.

PutInstance

PutProperty VariableCondition

element can be contained by...

Figure 5.2: The template language elements

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 63

All of these elements reference corresponding elements from a particular schema mapping

document using the attribute name, which connects with a templateName attribute in

the schema mapping elements. Using SQL queries from mapping elements, a template

document can be considered for an RDF view of a source RDB.

Informal semantics of these elements, including examples, are described in the following

paragraphs. Their normative syntax is detailed in Section 5.5. All of the following examples

are based on the mapping document from the Appendix A.

Element PutInstance (template instance)

A PutInstance element refers to a particular mapping class. When used in a template

document, it selects data from a relational database according to a SQL query from a

mapping class. Each row (a tuple) of a returned relation will be transformed into one RDF

instance. An RDF instance is generated with all its attributes defined in a corresponding

mapping class.

Listing 5.8: Template instance example
<PutInstance name=" person" />

The code fragment from Listing 5.8 places all persons from a table PERSON to an RDF

document. Each produced RDF resource will contain RDF attribute rdf:about.

Element PutProperty (template property)

A PutProperty element refers to a particular mapping property. It is always embedded

in a PutInstance element. When used in a template document, it puts an RDF property

with RDF attributes into produced RDF resources. If a PutProperty refers to a datatype

mapping property, a value of the property is selected from a relational database (see List-

ing 5.9). If the element refers to an object mapping property, it must contain another

PutInstance (this is further detailed in a later section) and nested RDF resource(s) will

form a value(s).

Listing 5.9: Template property example
<putInstance name=" person">

<putProperty name=" surname" />
</putInstance >

The example in Listing 5.9 will add RDF property surname with a corresponding value

from a database to each produced instance of the ontology class Person.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 64

Element Condition (template condition)

A Condition element refers to a particular mapping condition and it is always embedded

in a template instance. From a template layer point of view, a template condition restricts

rows of a relation returned by the template instance. It selects (and transformes into RDF

instances) only those rows that conform the mapping condition.

A template condition element in a template document must have a value. his value can

be either a literal or a Variable element, which is a reference to the relating template

instance. The sample of the former case is seen in Listing 5.10, and the latter case is

detailed in the Variable section.

Listing 5.10: Template condition example

<PutInstance name=" person">
<Condition name=" username">svihlm1 </Condition >
<PutProperty name=" surname"/>

</PutInstance >

The condition in Listing 5.10 contains a literal and reduces selected persons to one with

the username svihlm1.

Element Variable (template variable)

A Variable element refers to a particular mapping variable and it must be embedded

in a Condition. It puts a variable value to a condition. Since a mapping variable exposes

a value from an enveloping mapping class, a referring template variable is able to make a

connection between instances from two corresponding mapping classes.

Listing 5.11: Complex template document example

<PutInstance name=" person" id="1">
<Condition name=" username">svihlm1 </Condition >
<PutProperty name=" surname"/>
<PutProperty name=" currentProject" ContainerNodeId =" projectBagId">

<PutInstance name=" project">
<Condition name=" personId">

<Variable id="1" name=" personIdVariable "/>
</Condition >
<PutProperty name=" projectHomepage "/>

</PutInstance >
</PutProperty >

</PutInstance >

The example in Listing 5.11 is the most complex one and it demonstrates all features of the

template language. The sample is based on the previous running example listings and also

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 65

on the schema mapping document A.1 in the Appendix A. The listing shows a relationship

between one person and his or her projects. The used variable has an id attribute that

refers to the corresponding instance: the instance of the class Person. The result of this

template is seen in Listing 5.12.

Listing 5.12: Resulting RDF
<Person rdf:about="http :// webing.felk.cvut.cz/people/svihlm1">

<surname rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#string">Svihla
</surname >
<currentProject >
<rdf:Bag rdf:nodeID =" projectBagId">
<rdf:li >
<Project rdf:about="http :// webing.felk.cvut.cz/projects /123">

<homepage >http :// webing.felk.cvut.cz/~ svihlm1/metamorphoses/
</homepage >

</Project >
</rdf:li >

</rdf:Bag >
</currentProject >

</Person >

5.4 Schema mapping language syntax (normative)

5.4.1 General elements

Document prolog

Since the schema mapping language is XML-based, documents must begin with the

appropriate XML prolog:

<?xml version="1.0"?>

Root element

The root element of a mapping document is Mapping. All mapping elements described

in the following text must be embedded in this root, which has the following form.

<Mapping xmlns="http://webing.felk.cvut.cz/metamorphoses/mapping/">

content

</Mapping>

Header and footer of an RDF document

There are two mandatory elements in the mapping document language that refer directly

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 66

to produced RDF documents: header element and footer element. They have the following

form, respectively:

<DocumentHeader><![CDATA[content]]></DocumentHeader>

<DocumentFooter><![CDATA[content]]></DocumentFooter>

content The content of these mandatory elements is attached to the beginning or the end,

respectively, of every RDF document based on a particular mapping document. The

content of these elements is CDATA, which stands for character data and means that

XML tags can be included.

Database connection

The DatabaseConnection element is in place to establish a connection with a particular

RDBMS. The syntax of this mandatory element does not depend on a mapping model

design but rather on a particular implementation. When using a JDBC driver to connect

a database, the syntax of this element can be as follows:

<DatabaseConnection jdbcURL = "jdbcURL "

jdbcDriver = "jdbcDriver "

username = "username "

password="password " />

The attributes of the element are self-evident.

5.4.2 Concept elements

Class

The Class element is a basic ability of the language to express a relation between one

or more database tables and corresponding ontology class.

<Class templateName="templateName "

rdfLabel="rdfLabel "

sql="sqlQuery ">

Content

</Class>

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 67

templateName (mandatory) Specifies a unique element identifier. A mapping element is

refered from a template document by this identifier. Identifiers are case-sensitive.

rdfLabel (mandatory) Specifies a name of a relevant ontology class that is referenced by

this fragment. A full class name with namespace of a relevant ontology is required.

sqlQuery (mandatory) The attribute contains an SQL query that returns a subset of a

database to be mapped by this fragment. The query can be SELECT, VIEW, etc., and

its form is RDBMS-specific.

content The following mapping elements can be content of this element: Property,

Attribute, ClassCondition or Variable.

Property

The Property element represents an ontology property. It always corresponds with an

enveloping mapping class.

In the case of datatype mapping property (property for which the value is a literal) it joins

the ontology property with a particular database column from a relation returned by a

query from an enveloping mapping class. In the case of object mapping property, it only

links the ontology property to the template layer.

<Property templateName="templateName "

rdfLabel="rdfLabel "

[sqlName="sqlName "]

[containerType="BAG | ALT | SEQ | COL"] >

Content

</Property>

templateName (mandatory) Specifies a unique identifier of a fragment within a mapping.

A mapping fragment is referenced from a template document by this identifier. Iden-

tifiers are case-sensitive.

rdfLabel (mandatory) Specifies a name of a relevant ontology property that is referenced

by this fragment. A full property name with namespace of a relevant ontology is

required.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 68

sqlName (optional) If a mapped ontology property is a datatype property, the value of this

attribute is the name of a column from a database result set, returned by SQL query

from an enveloping mapping class.

If a mapped ontology property is an object property, this attribute is ommited.

containerType (optional) If a mapped ontology property is a object property that can

have more values (i.e. it is not functional property), this attribute specifies the type

of RDF container that will be used for holding the property values. Legal attribute

values are BAG, ALT, and SEQ, which stand for bag, alternative and sequence container

type, or COL, which stands for collection from the RDF specification.

content An element Attribute can appear in the content of this element.

Attribute

The Attribute element is to specify an RDF attribute of an enveloping mapping class

or property.

<Attribute rdfLabel="rdfLabel "

[prefix="prefix "]

[sqlName="sqlName "]

[sufix="sufix "] />

rdfLabel (mandatory) Specifies the name of an RDF attribute.

prefix (optional) Puts the specified literal at the beginning of an RDF attribute value.

sufix (optional) Puts the specified literal at the end of an RDF attribute value.

sqlName (optional) If specified, it joins this element with a column from a database result

set, returned by SQL query from an enveloping mapping class. The value returned

from a database is put into an RDF attribute value between prefix and sufix values.

5.4.3 Relationship elements

Condition

The ClassCondition element is designed to drive the use of mapping class elements

from a template document. It can serve two purposes:

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 69

- It can restrict rows in a result set returned by SQL query from an enveloping mapping

class (when tableString is not specified).

- It can add more database tables to query (by specifying their list in tableString

attribute). This means that more mapping classes can be linked in a template doc-

ument.

This is detailed in Section 5.3. The syntax of the mapping condition element as follows.

<Condition templateName="templateName "

whereString="whereString "

[tableString="tableString "] />

templateName (mandatory) Specifies a unique identifier of a condition within a mapping.

A condition is referenced from a template document by this identifier. Identifiers are

case-sensitive.

whereString (mandatory) A value is added to a WHERE part of an SQL query from an

enveloping mapping class.

tableString (optional) A list of database tables that should be added to a FROM part of an

SQL query from an enveloping mapping class.

Variable

The Variable element is to expose a single value from an enveloping mapping class in

order to form a connection with other mapping classes in a template document. This is

detailed in Section 5.3.

The syntax of the mapping variable element as follows.

<Variable templateName="templateName "

sqlName="sqlName " />

templateName (mandatory) Specifies a variable name – the unique identifier of a map-

ping variable within a mapping. A mapping variable is referenced from a template

document by this identifier. Identifiers are case-sensitive.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 70

sqlName (mandatory) The value of this attribute is the name of a column from a database

result set, returned by SQL query from an enveloping mapping class. A literal re-

turned from the database is a value of a variable.

5.5 Template language syntax (normative)

The template language is designed to compose templates for RDF document production.

5.5.1 General elements

Document prolog

Since the template language is XML-based, documents must begin with the appropriate

XML prolog:

<?xml version="1.0"?>

Root element

The root element of a template document is Template. Element Mapping must be

embedded in this root. Another possible child element in the root is only PutInstance.

<Template xmlns="http://webing.felk.cvut.cz/metamorphoses/template/">

content

</Template>

Reference to a mapping document

A template document is always based on one particular mapping document. This element

is to join a template document with its mapping document. The syntax as follows:

<Mapping url="url " />

url (mandatory) Specifies the location of the corresponding mapping document.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 71

5.5.2 Production elements

PutInstance

This element puts instance(s) of a specified mapping class into a generated RDF docu-

ment. An RDF instance is generated with all of its attributes defined in a corresponding

mapping class.

<PutInstance name="name " [id="id "] [nodeId="nodeId "] >

content

</PutInstance>

name (mandatory) Specifies the corresponding mapping class from a mapping document.

This attribute corresponds with attribute templateName in a mapping document.

id (optional) If a variable of the corresponding mapping class is used somewhere in a

template document, this specifies the identifier for such a variable.

nodeId (optional) In case the instance is a blank node, it is possible to specify a rdf:nodeId

attribute for this node.

content (optional) Elements PutProperty and Condition can appear in the content of

this element.

PutProperty

This element puts property of an enveloping instance into a generated RDF document.

An RDF property is generated with all of its attributes defined in a corresponding mapping

property.

<PutProperty name="name " [containerNodeId="containerNodeId "]>

content

</PutProperty>

name (mandatory) Specifies the corresponding mapping property from a mapping docu-

ment. This attribute corresponds with attribute templateName in a mapping docu-

ment.

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 72

containerNodeId (optional) If a referred mapping property is a container, this attribute

sets a rdf:nodeId attribute for a produced RDF container.

content (optional) The content can be empty in the case of a datatype property. In the

case of a object property PutInstance property must be embedded.

Condition

This element puts condition of an enveloping instance into a generated RDF document.

<Condition name="name "> content </Condition>

name (mandatory) Specifies the corresponding mapping condition from a mapping docu-

ment. This attribute corresponds with attribute templateName in a mapping docu-

ment.

content (mandatory) The content can be a literal or a Variable element.

Variable

This element puts a variable value to a condition.

<Variable name="name " id="id " />

name (mandatory) Specifies the corresponding mapping variable from a mapping docu-

ment. This attribute corresponds with attribute templateName in a mapping docu-

ment.

id (mandatory) Specifies the particular PutInstance element, from which the variable

stems. The Variable element must be an ancestor in a subtree of a corresponding

PutInstance.

5.6 Summary

In this chapter we proposed two XML-based languages that materialise abstract concepts

of our data transformation model described in Chapter 4. The schema mapping language is

able to describe a schema mapping between two schemas (an ontology and a RDB schema).

CHAPTER 5. DATA TRANSFORMATION LANGUAGES 73

One can build templates for RDF production by employing the template language. The

languages cooperate in order to enable data transformation from a relational database into

RDF documents based on a schema mapping.

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 74

6 Completness of the data transformation

In this chapter we sum up features of our data transformation model and consider its

completeness according to the used schema formalisms and data formats.

6.1 Relational completeness

The languages proposed in Section 5 are to transform relational data into RDF. In this

section we analyse features of the languages to examine their capability to query relational

database.

Since we use SQL queries to identify parts of a relational database schema as well as to

select data instances from a database, we can address any part of the database (theorem

4.3.1 and its proof). Schema mapping language does not put any restrictions on SQL

SELECT queries in its elements (Section 5.3.1).

In this section we will show that the combination of our schema mapping and template

language is capable of expressing all operations of the relational algebra and thus we will

prove the relational completeness of our approach. In doing this, we show that our data

transformation model can be an alternative to the native SQL access to relational data.

Relational completeness of our model was verified using the Elsmasri’s and Navathe’s

[72] approach; we proved that the minimal set {σ, π,×,∪,−} of relational operators is

supported.

Relational schema and RDFS ontology for the following Selection, Projection and Cartesian

Product samples are identical to those used in the running example (Section 5.1).

6.1.1 Selection and Projection

The listings 6.1 and 6.2 show schema mapping and template document that illustrate

operations Selection and Projection.

Listing 6.1: Sample mapping for Selection and Projection
<Class templateName =" person" rdfLabel =" Person" sql=" select * from person

">
<ClassCondition templateName =" username" whereString =" username ="/>
<Property templateName =" surname" rdfLabel =" surname" sqlName ="

family_name" />
</Class >

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 75

Listing 6.2: Sample template for Selection and Projection

<PutInstance name=" person">
<Condition name=" username">svihlm1 </Condition >
<PutProperty name=" surname"/>

</PutInstance >

The selection

σusername=”svihlm1”(Person)

is enabled by the class condition in the mapping and its application in the template. Only

RDF resources of type Person that fulfil the condition will be selected as a result.

The projection

πfamily name(Person)

is modelled by the mapping property and its application in the template. The mapping

property allows us the option to access specified attributes from a relation and to write

them as RDF properties.

6.1.2 Cartesian Product

The mapping from Listing 6.3 shows two mapping classes that relate to two database

relations (Project and Person).

Listing 6.3: Sample mapping for Cartesian Product

<Class templateName =" person" rdfLabel =" Person" sql=" select * from person
">

<Property templateName =" surname" rdfLabel =" surname" sqlName ="
family_name" />

<Property templateName =" currentProject" rdfLabel =" currentProject "/>
</Class >

<Class templateName =" project" rdfLabel =" Project" sql=" select * from
project p">

<Property templateName =" projectHomepage" rdfLabel =" homepage"
sqlName ="web"/>

</Class >

Listing 6.4: Sample template for Cartesian Product

<PutInstance name=" person" id="1">
<PutProperty name=" surname"/>
<PutProperty name=" currentProject" ContainerNodeId =" projectBagId">

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 76

<PutInstance name=" project">
<PutProperty name=" projectHomepage "/>

</PutInstance >
</PutProperty >

</PutInstance >

This is equivalent to the cartesian product operation

Person× Project.

It should be noted that a projection was applied to both relations and that only one

attribute was assigned to the output for each relation. More precisely, we should write

that the listings show complex operation

πfamily name(Person)× πweb(Project)

6.1.3 Set-Union and Set-Difference

Operations Set-Union and Set-Difference require relations with the same arity and com-

patible attribute domains. As a sample, we will consider two relations R(r,s) and S(r,s).

Our template language does not have the means to express these two operations but they

can be easily modelled in a schema mapping. A result of such modelling is a mapping class

that contains the result of a particular operation and can be used in a template document

to put the results into RDF.

Listing 6.5 shows set-Union (R ∪ S).

Listing 6.5: Sample mapping for Set-Union

<Class templateName =" union" rdfLabel =" Union" sql=" select * from R union
select * from S">

...
</Class >

Listing 6.6 shows set-difference (R− S).

Listing 6.6: Sample mapping for Set-Difference

<Class templateName =" difference" rdfLabel =" Difference" sql=" select
distinct * from R where not exists (select * from S where R.a = S.a
and R.b = S.b);">

...
</Class >

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 77

6.1.4 Composition of Operations

It is also possible to build more complex expressions using multiple operators in our queries.

For instance, Listing 6.2 combines selection and projection and Listing 6.4 combines pro-

jection and cartesian product. A more complex query is seen in Listing 5.11 in Section

5.3.2, which describes the template language. This sample also demonstrates how to create

(Equi) Join operation in our languages.

6.1.5 Summary

The first three relational algebra operators ({σ, π,×, }) are supported directly by features of

the template language. The other two operators ({∪,−}) are supported by SQL construc-

tions in the schema mapping language. It is also possible to combine multiple operators

into more complex expressions. In this section we showed that our languages are able to

simulate all basic relational algebra operations.

We cannot say that our data transformation is relational complete according to Codd’s

definition of relational completeness [26], because the result of our query is not relation

but RDF graph (Codd’s definition requires the result of an operator to be a relation). Due

to more relaxed definitions1 our approach is relational complete. However, while supporting

all relational algebra operators, our approach can be an alternative to the native SQL access

to relational database.

6.2 RDFS support

We based our schema mapping approach on the idea that general schema consists of con-

cepts, relationships and restrictions (definition 3.4.1). Both of our used schema formalisms

– relational model and RDFS language – conform this idea. Thus we designed the schema

mapping model on mapping of concepts, relationships and restrictions.

The mapping layer is capable of mapping a relational database schema into an RDFS

ontology. Here we show that we support all RDFS features in our data transformation

model. We will address all RDFS concepts as listed in the RDF Schema specification

([17]) and discuss their support.

1A definition of relational completeness provided in [72] states that query language is relational complete
if it can express every query that is expressible in relational algebra.

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 78

6.2.1 RDFS classes

rdfs:Resource

All things described by RDF are called resources, and are instances of the class

rdfs:Resource. This primitive is abstract and we do not address it directly but all classes,

properties, and instances used in our data transformation automatically refer to this prim-

itive.

rdfs:Class, rdf:Property

The concept mapping class (definition 4.5.1) is to refer to RDFS classes.

The concept mapping property (definition 4.5.2) is to refer to RDFS properties.

rdfs:Literal

The class rdfs:Literal is the class of literal values (strings). In Section 4.8, we showed

that it is possible to create an RDF triple that include literal value. This can be done by

applying a datatype mapping property (definition 4.5.3) to the mapping layer.

rdfs:Datatype

rdfs:Datatype is the class of datatypes. Any instance of this class can be added to a

literal string to create a typed literal. In our model this can be accomplished by specifying

a datatype RDF URI reference in the mapping attribute (definition 4.5.5) with the name

rdf:datatype in the datatype mapping property.

rdf:XMLLiteral

RDF predefines just one datatype: rdf:XMLLiteral, which is used for embedding XML

in RDF. The support for this feature is discussed in the next Section (6.3).

6.2.2 RDFS properties

rdf:type

Property rdf:type is used to state that a resource is an instance of a class. Although it is

not directly mentioned in our languages, the data transformation model supports this fea-

ture, as an ontology class is automatically assigned to each generated RDF instance. This

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 79

is possible because an RDF instance is based on a template instance, which is connected

to an ontology class via a mapping class.

rdfs:seeAlso, rdfs:isDefinedBy

Property rdfs:seeAlso indicates a resource that might provide additional information

about the subject resource, and rdfs:isDefinedBy points to a resource that defines the

subject resource. In our transformation languages, both properties can be added to any

generated resource via mapping attributes assigned to mapping classes.

rdf:value

Property rdf:value is the predefined RDF primitive in place to describe structured

values. It can be used as any other ontology property in our transformation model.

rdfs:range, rdfs:domain, rdfs:subClassOf, rdfs:subPropertyOf

Properties rdfs:range, rdfs:domain, rdfs:subClassOf and rdfs:subPropertyOf do

not affect produced RDF graphs directly; they are simply to define inference rules to enable

the RDF entailment on these graphs. For this reason they are not a part of our model.

However, if a particular ontology is connected to a produced RDF document, further

reasoning with these properties is possible.

rdfs:label, rdfs:comment

These properties are used to provide, respectively, a human-readable version of a resource

name and a human-readable description of a resource. They are usually used in an ontology

and thus are not important for our purposes. However, if necessary, they can be added to

any generated resource via mapping attributes assigned to mapping classes.

RDF containers and collections

RDFS specification ([17]) also defines vocabulary for RDF containers and collections.

These RDF features are completely supported by our transformation model, as discussed

later. Thus, all relevant RDFS properties and classes for containers and collections are

supported as well.

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 80

Reification vocabulary

The vocabulary for RDF reification contains one predefined class (rdf:Statement) and

three predefined properties (rdf:predicate, rdf:subject and rdf:object), which can

be used as classes and properties from an ontology and which thus are supported directly.

6.3 RDF support

In this section we show that our transformation model supports all basic RDF features,

which means that the RDF document can be built as a result of data transformation. RDF

concepts and abstract syntax specification [63] enumerates the following RDF key concepts:

(i) graph data model, (ii) datatypes, (iii) expression of simple facts and (iv) entailment.

RDF Primer [70] adds other capabilities: (v) RDF containers, (vi) RDF collections, (vii)

RDF reification, (viii) structured values and (ix) XML literals.

These concepts and their support are discussed in the following text. However, many of

these features were detailed in the previous chapters and thus we will refer to the previous

descriptions.

Graph data model

The underlying structure of any expression in RDF is a collection of triples [63], each

consisting of a subject, a predicate and an object (definition 4.2.7). The subject is a

resource being described by the statement, the predicate is a specific property of the

subject, and the object is value of the property. In Section 4.8 we show that our data

transformation model is capable of creating RDF graph consisting of triples.

Literals

Literals are used to identify values such as numbers and dates by means of lexical rep-

resentation. A literal may be the object, but not the subject or the predicate, of an RDF

statement [63]. There are plain and typed literals in RDF. In both cases a literal is a string,

but in the latter case the datatype URI is attached to this string (datatypes are discussed

in the next paragraph). However, the main part of literals is the string value and such a

value can be added to an RDF triple addressing datatype mapping property, as discussed

in sections 4.5, 5.3.1 and 5.3.2.

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 81

Datatypes

RDF uses datatypes in the representation of values such as integers, floating point num-

bers and dates. It is possible to create typed literals using datatypes. In RDF/XML

serialisation format (which is used in our approach), a datatype is added to a literal string

value by a rdf:datatype attribute on the property element [5]. This is possible in our

model by adding mapping attribute rdf:datatype to the mapping property, as detailed in

sections 4.5, 5.3.1 and 5.3.2.

XML Literals

RDF allows XML literals to be given as an object node of a predicate. These are written

in RDF/XML as a normal string literal in the content of a property element and are indi-

cated using the rdf:parseType="Literal" attribute on the containing property element

[5]. Thus, in our approach, it is possible to add a mapping attribute rdf:parseType with

value Literal to a datatype mapping property when expecting XML tags in a literal value.

Structured values

RDF model intrinsically supports only binary relations, but in some cases it is neces-

sary to represent information involving higher arity relationships (relationships between

more than two resources). This kind of structured information can be represented in RDF

by describing the aggregate element as a separate resource and then by making separate

statements about that new resource [70]. Since this approach uses RDF data model based

on triples, structured values are directly supported by our data transformation. The in-

termediate resource is often represented by blank nodes, which are also supported by our

model. In addition, the main part of a structural value can be denoted by predefined RDF

property rdf:value.

Expression of simple facts

The concept of a simple fact expression in RDF, as described in [63], is based on a

graph data model and the possibility to build structured values using blank nodes. Since

these factors are possible in our data transformation approach, this RDF feature is also

supported.

RDF Containers

Containers are designed to enable the description of groups of things in RDF. A container

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 82

is a resource that contains elements, which are called members and can be either resources

or literals [70]. RDF specification provides several predefined types and properties that

can be used to describe containers. There are three types of containers defined: bag,

sequence and alternative. In our schema mapping language (see Section 5.4), it is possible

to denote a mapping property to be a specific type of container property by the attribute

containerType. Referring to such a mapping property from a template document will

automatically create a container within the property (as illustrated by samples in 5.3.2).

RDF Collections

An RDF collection is a group of things represented as a list structure in the RDF graph

[70]. Describing collections is very straightforward in RDF/XML: the enclosed property has

the attribute rdf:parseType="Collection". In our work, a mapping property contains

a collection when it has the mapping attribute containerType with the value COL.

RDF Reification

RDF provides a built-in vocabulary intended for describing RDF statements. A de-

scription of a statement using this vocabulary is called a reification of the statement [70].

Predefined classes and properties from this vocabulary can be used in our schema mapping

language in the same way as any other classes from an ontology. Since reification state-

ments are built using the triple model, we can say that the reification is supported in our

data transformation model.

Entailment

The idea of RDF entailment, as described in [51], is beyond the scope of our approach;

we simply transform data to RDF document and make no further reasoning with its state-

ments. However, when a proper ontology is connected to generated RDF, reasoning can

be performed later by other applications.

XML serialisation syntax

According to [63], RDF has a recommended XML serialisation form called RDF/XML,

which can be used to encode the data model in exchange for information among applica-

tions. The RDF output of our data transformation is serialised in this format. In addition,

our template language is encoded in XML to make it intuitive for a human user to build

a template for RDF document (as commented on in Section 5.2). The RDF/XML syntax

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 83

specification [5] lists all syntax terms of the language in the chapter titled Grammar sum-

mary. Our data transformation model supports all of the listed terms except those in the

category oldTerms (rdf:aboutEach, rdf:aboutEachPrefix and rdf:bagID), which have

been withdrawn from the language.

6.4 OWL support in the data transformation model

Our data transformation model was designed to work with of RDFS ontologies. However,

the OWL language is a much more powerful tool for ontology design then RDFS and is

intended to be the main ontology formalism for the semantic web [71]. According to this,

we intend to make our approach OWL-compatible.

OWL is built on top of RDFS and therefore some parts of OWL language are already

supported in our model. The following list divides OWL features into four groups from

this perspective. The groups are detailed later in the text and their summary can be found

in the Appendix B.

- Directly supported OWL features – language constructs that can be used in the

schema mapping.

- Indirectly supported OWL features – language constructs that do not affect

the schema mapping and data transformation but can be used later for reasoning on

produced RDF documents.

- Unsupported OWL features – language constructs that are not yet supported by

our approach.

- Irrelevant OWL features – language constructs that are irrelevant to our work.

OWL provides two specific subsets of language constructs [31]: OWL Lite and OWL DL.

The third OWL sublanguage is OWL Full, which has the same set of constructs as OWL

DL and relaxes some of its constraints. When discussing OWL in the following text, we

will address OWL Full.

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 84

6.4.1 Directly supported OWL features

According to the full RDFS support in our model, we can say that all OWL features related

to RDFS are supported automatically. The construct owl:Class plays the same role as

rdfs:Class and thus can be mapped in the same way. Additionally, owl:ObjectProperty

and owl:DatatypeProperty are subclasses of rdf:Property [71] and can be used trans-

parently in the schema mapping.

6.4.2 Indirectly supported OWL features

An important task of OWL constructs is to define inference rules to enable the entail-

ment on RDF graphs. These do not affect produced RDF graphs directly and thus we

do not use them in the schema mapping. Our approach supports these features indi-

rectly; if a particular ontology is connected to a produced RDF document, further rea-

soning with asserted statements is possible. These constructs include OWL class axioms

(rdfs:subClassOf, owl:equivalentClass, owl:disjointWith), boolean combinations of

class expressions (owl:intersectionOf, owl:unionOf, owl:complementOf), RDF Schema

property constructs (rdfs:subPropertyOf, rdfs:domain, rdfs:range), property rela-

tionships owl:equivalentProperty, owl:inverseOf), and logical characteristics of prop-

erties (owl:TransitiveProperty, owl:SymmetricProperty. Property value constraints

(owl:allValuesFrom, owl:someValuesFrom and owl:hasValue) are also supported in this

way.

6.4.3 Unsupported OWL features

Cardinality restrictions on properties can be set in OWL. However, there is no mechanism

in our work to control cardinality of produced RDF instances and therefore the follow-

ing OWL constructs are not yet supported: owl:maxCardinality, owl:minCardinality,

owl:cardinality, owl:FunctionalProperty, and owl:InverseFunctionalProperty.

6.4.4 Irrelevant OWL features

There is also a set of OWL constructs that provides features for the ontology engineering

but do not affect RDF instances of an ontology. These constructs are designed to denote

annotations, ontology headers, imports, and version information (see [31] for a list of

CHAPTER 6. COMPLETNESS OF THE DATA TRANSFORMATION 85

constructs) and are not relevant to our work.

6.5 Summary

In this chapter we discussed completeness of our data transformation model according to

used formalisms. This discussion proves that we achieved the goals defined at the beginning

of our work.

In the definition 3.4.5 we defined the formal goal of our work as follows: Data transfor-

mation is an operation ts,t, which is able to create a target database Dt conforming to a

schema St from data stored in a source database Ds conforming to a schema Ss.

Then we specified schema formalisms and data formats (Section 4.1) so that: (i) a schema

formalism for a source schema is relational model, (ii) source data are stored in an RDBMS,

(iii) a schema formalism for a target schema (i.e. for an ontology) is RDFS, and (iv) target

data are stored in an RDF document.

In this chapter we showed that:

- the data transformation model can be an alternative to the native SQL access to

relational data,

- RDF graph can be composed by our approach and all RDF features are supported,

- all RDFS constructs are supported, and

- a large portion of OWL is supported as well.

This means our model can map relational schema to RDFS ontology and create

RDF document from relational data according to this mapping (as previously

discussed in Section 4.9), which was the goal of our work.

CHAPTER 7. IMPLEMENTATION 86

7 Implementation

The chapter describes three tools that were implemented to enable the data transformation

described above. The core piece of software is METAmorphoses, a processor for our data

transformation. RDF-Shout is a simple web application that publishes RDF from the

processor on the web. Schema mapping editor is a GUI editor that helps human users to

create mapping between a database schema and ontology. All applications are written in

Java for intended platform independence.

7.1 METAmorphoses – data transformation processor

This section covers implementation issues of the data transformation processor, includ-

ing its architecture and transformation algorithm. The usability of our approach is also

discussed here as a pratical goal defined in Section 3.3.

METAmorphoses is a processor for data transformation; it transforms data from a relational

database into RDF documents according to a mapping. To enable this, METAmorphoses

processes schema mapping and template documents written in our XML languages (Chap-

ter 5). The processor is implemented using Java and can be used as a standalone CLI

application or as a programming library.

7.1.1 Processor architecture

Since our data transformation model is divided into two layers, both the processor architec-

ture and its logic follow this division; there is a mapping processor and template processor.

The former processes mapping documents and the latter processes template documents

and drives RDF production.

The mapping layer handles all the complexity and flexibility of the schema mapping while

the template processor is a simple programmer interface of the system.

The big picture of the processor architecture in UML is depicted in Figure 7.1. The tem-

plate processor handles template documents and takes the necessary mapping elements

from the mapping processor. Mapping elements also provide SQL queries, which are used

in the template layer to fetch data from the relational database. The database is connected

via DAO (database access object), which uses JDBC drivers [38]. This means that any

CHAPTER 7. IMPLEMENTATION 87

database with a JDBC driver can be connected by METAmorphoses. The template proces-

sor combine the fetched data with other information in order to create the resulting RDF

document. Details of the data transformation process are discussed in the next section.

METAmorphoses

Template Processor

Mapping Processor DAO

JDBC

Mapping

document

(XML)

Template

document

(XML)

RDB

Figure 7.1: METAmorphoses architecture

However, this division has a bigger impact than a simple separation of schema mapping

and instance transformation. The two-layer architecture is a crucial point in order to build

an easy-to-use data transformation system. The server side of common web applications is

very often divided into three layers [103] – a presentation layer, a business logic layer, and a

database layer. This idea is partially driven by the common design pattern MVC (Model-

View-Controller) [41], which strictly separates presentation logic from business logic. This

model helps to modularise applications and bring flexibility to their design, but it also

separates developer roles in the application development. To reflect this separation in the

application development team, there is a presentation layer programmer, a business logic

programmer and a person responsible for a database.

An architecture of our framework has many points in common with the MVC model, so

the mapping framework can be easily adapted by the web application development process,

which is one of our goals (this issue is discussed in Section 7.1.4).

7.1.2 Data transformation process

METAmorphoses are built on the abstract algorithm (4.7.1) proposed in Section 4.4. This

algorithm is slightly extended in the implementation:

CHAPTER 7. IMPLEMENTATION 88

Algorithm 7.1.1 (METAmorphoses data transformation process)

Input: mapping document M , template document T referencing M , user variables V ,

relational database D

Output: RDF stream

Step 1: add V into T

Step 2: parse T

Step 3: parse M corresponding to T

Step 4: write RDF header to RDF output stream

Step 5: for each template element Et from T do

identify corresponding mapping element Em from M

create RDF fragment:

– assign RDF attribute names from RDFS ontology stored in M

– assign RDF attribute values from relational database referenced by M

write RDF fragment to RDF output stream

end for

Step 6: write RDF footer to RDF output stream

All concepts in the algorithm have already beeb described except for user variables. A

user variable is a string, which can be placed to the condition in a template document and

data are selected from a database according to this condition. Thus, in this way a user

can control RDF production.

The sequence diagram in Figure 7.2 illustrates this process according to system components

and their cooperation.

7.1.3 Performance considerations

The question of performance was considered at the beginning of our work and it was one

of the goals defined in Section 3.3.

The METAmorphoses processor is a stream processor, meaning that it parses elements in

a template document one after another and writes corresponding RDF constructs directly

to a data stream. This is allowed by the theoretical design of our data transformation

CHAPTER 7. IMPLEMENTATION 89

<<subsystem>>
:Template Processor

<<subsystem>>
:Mapping Processor

<<subsystem>>
:DAO

Request for RDF

Get mapping elements

Return mapping elements

Read template document

Query RDB

Return data

Compose RDF fragment

Write RDF fragment

for each template element

Read mapping
document

Write RDF start

Write RDF end

Figure 7.2: Data transformation process

model and by the processor architecture, in which we decided not to use any RDF API in

the transformation process. However, this point is a very strong performance issue. The

processor does not create an entire resulting RDF model before it is written to an output,

thus a RAM footprint of the processor is not affected by the size of the resulting graph

(which is not true in the case of tools that use other data transformation approaches). Not

using any RDF API also means higher computational performance (as showed in Section

8).

7.1.4 Practical considerations

One goal of our work was to implement a practically useful tool for data transformation.

This section provides the answer to the goal usability as defined in Section 3.3.

CHAPTER 7. IMPLEMENTATION 90

7.1.4.1 Schema mapping layer

As discussed before, our data transformation model uses a relational database schema (i.e.

logical schema) as an input rather than an ER schema (i.e. conceptual schema).

This approach is in place for a very practical reason. Even a conceptual schema expresses

more semantic information about a mapped database than about a logical one, and we

decided on a logical schema primarily because there is usually no conceptual model available

for a running database. We wanted to keep our mapping approach as simple as possible,

and creating a logical model from a conceptual one would have added more steps to the

mapping process. This issue is further detailed in [91] and [80].

7.1.4.2 Template layer

The user interface (and query language) of our data transformation processor is the tem-

plate document language (Section 5.3.2). A web application programmer designs RDF

documents by creating templates. Thus, the usability of our proposal strongly depends on

the syntax of this language.

The syntax described in Section 5.5 is not an only possibility – it is only a basic expression

of the proposed theoretical concepts. Although the language is standing based on the

same principles, its syntax can vary. For example, a JSP custom tag library [86] for the

language can be deployed so that template tags can be combined with JSP tags. In this

way a template can be included directly into a JSP page to publish an RDF document

dynamically or to include RDF directly to an (X)HTML page. This is an issue to be

explored in future work.

7.1.4.3 Creating data transformation documents

This section provides some usability considerations on how mapping and template docu-

ments can be created in METAmorphoses.

1. Building a mapping document

In the first step, the concept mapping elements – mapping classes, properties, and

attributes – are written. Then, mapping conditions are added to relating mapping

classes. Each element has an identifier, which will be used in the template document.

It is obviously unnecessary to map all parts of a relational database schema to all

CHAPTER 7. IMPLEMENTATION 91

ontology concepts. It is possible to create rules only for necessary concepts and

relationships.

The mapping document is created only once and there is only one mapping document

for the combination of a relational database schema and an ontology.

The mapping document can be built manually, but in the case of a complex database

schema or ontology it can be very difficult to create a valid mapping document. For

this purpose we designed a mapping editor (detailed in 7.3); a GUI application for

the schema mapping design.

2. Creating documentation for the mapping document

Once the mapping document is ready, a sort of documentation can be created for it in

METAmorphoses. This documentation is a list of possible mapping elements (classes,

properties, conditions and variables) that can be used in a template document. The

documentation is in human-readable format so that it can be used by a template

designer.

3. Creating template documents

Several different template documents can be built on top of one mapping document

from the composition of elements from the mapping document (as discussed in Section

5.3.2). Each template document is a template for a set of similar RDF documents.

These documents have the same structure as specified by the template but feature

different content depending on the corresponding relational data.

When a relational database schema or an ontology is updated, the mapping and/or tem-

plate document must also be updated. The two-layer architecture adds reliability to this

issue. Some changes (typically changes of schema concepts) can be solved by changing only

a mapping document without affecting template documents. Only more complex changes

of a database model or ontology (typically changes of relationships) must be solved by

updating both the mapping document and depending template documents.

7.1.4.4 Developer roles

When we return to our discussion about web application developer roles (in Section 7.1.1),

we can see that there are two distinct roles in the mapping creation. The first role, mapping

designer, corresponds to a database administrator and/or business logic programmer. This

CHAPTER 7. IMPLEMENTATION 92

person must understand relational database schema and the principles under semantic web

formats RDF and OWL.

The second role, template designer, is responsible for creating the final RDF document

layout. This role is likely filled by the same person as the presentation logic programmer

in the web application development. This individual composes elements from the mapping

document according to its documentation. Therefore, this person does not necessarily have

to know all of the details of the ontology languages or the RDF specification.

This is possible due to the framework architecture, which is based on the MVC model. From

the mapping process perspective, we can see the mapping layer as a business logic of our

architecture, the template layer as a presentation logic, and the mapping documentation

as an API documentation. With the clear separation of developer roles, a development

process of semantic web presentation can benefit from the MVC design pattern in the same

way that benefits a web application development.

7.1.4.5 Discussion on usability

The practical topics discussed in this section reflect our intention to design and implement

a usable tool. Thus, here we include some explanations and recommendations. These con-

siderations were practically tested in the case studies we describe in Chapter 9. Although

we performed no formal usability tests, our case study deployments showed that our sys-

tem is very easy to learn and to use. Formal usability testing is a potential field for future

work.

7.1.5 Current status and future work

The METAmorphoses described in this section (version 0.2.5) supports all features of data

transformation model discussed in this thesis. It is quite a stable and usable software and

is available at http://metamorphoses.sourceforge.net/.

However, the software presents several issues to improve: the processor lacks a database

pool and a good logging system, and some general performance issues could be improved. In

the future we plan to provide JSP custom tag lib as an interface for the template processor

and standalone PHP implementation of METAmorphoses to make this idea available to a

larger part of the web community.

CHAPTER 7. IMPLEMENTATION 93

7.2 RDF-Shout – publishing RDF metadata on the web

RDF-Shout is a simple web application designed to publish data from a relational database

as RDF documents on the web. It uses METAmorphoses processor library as a core of the

data transformation. The application is written using Java Servlet technology and requires

an application server with a servlet container (e.g. Apache Tomcat [44]).

The architecture of RDF-Shout is detailed in Figure 7.3. Servlet currently just forwards

received HTTP requests to the processor and returns RDF documents in HTTP responses.

RDF-Shout

Web controller

(JAVA servlet)

METAmorphoses

processor

JDBC

RDF document

RDB

HTTP request HTTP response

Figure 7.3: RDF-Shout architecture

HTTP requests are parsed in RDF-Shout in the following way: (i) Any filename.rdf part

of a requested URL is mapped to the template document filename.xml. (ii) All HTTP

parameters are translated to user variables for the template document. For instance,

a HTTP request http://sample.org/person.rdf?username=svihlm1 will result in an RDF

document based on the template person.xml with the value svihlm1 for the user variable

username.

The current version of RDF-Shout is very simple and it presents an opportunity for many

improvements. We plan to add caching and logging features, web interface for mapping

and template document management, and HTTP interface based on the REST architecture

[37].

CHAPTER 7. IMPLEMENTATION 94

7.3 Schema mapping editor

To simplify the schema mapping process, we provided the GUI editor for creating mapping

documents. The application was implemented by Jǐŕı Hofman, a student of Faculty of

Nuclear Sciences and Physical Engineering in Prague, who did this work as a research

project [55] under the supervision of this author.

The mapping editor is written in Java to provide platform-independent software. It uses

JDBC drivers for database connectivity and Jena2 RDF library [22] to handle ontologies.

Figure 7.4: Schema mapping editor

The user interface of the application is depicted in Figure 7.4. The editor connects a

specified database and provides its structure in the left window. An ontology can be

viewed in the right window. The whole application is designed to use the drag’n’drop

concept. Schema concepts from both sides can be dragged to the centre, where a visual

representation of a mapping document is built and the editor asks for values of mandatory

fields. This mapping document can be saved in XML format and used directly by the

METAmorphoses processor.

CHAPTER 7. IMPLEMENTATION 95

Features

- All mapping language constructs are supported,

- drag’n’drop based GUI,

- any RDFS or OWL ontology can be loaded,

- any RDBMS with JDBC driver can be connected,

- editor secure consistency of built mapping documents, and

- resulting mapping documents are serialised in our schema mapping language.

Limitations

The main limitation of the application is that it can load only one ontology file at a

time. If more ontologies were to be mapped, they would have to be merged into one file.

This a is possible area for future work on this tool.

7.4 Summary

The tools described in this chapter were implemented to prove the ideas from the theoretical

portion of this work. METAmorphoses processor supports all constructs of both XML

languages (as described in Chapter 5) and has all of the features of our data transformation

model. Another two applications are designed to support the METAmorphoses: RDF-

Shout places the processor library in the context of the (semantic) web and the schema

mapping editor makes mapping creation a pleasant user experience.

All of this software was also tested and deployed in various case studies. Experimental

evaluation of the processor is detailed in Chapter 8, the case studies are described in

Chapter 9.

CHAPTER 8. PERFORMANCE ANALYSIS 96

8 Performance analysis

One of the goals of this work, defined in Section 3.3, is performance. We designed the

theoretical foundations of our data transformation model and processor architecture in

order to reach this goal. In this chapter we describe a set of performance tests to compare

our transformation processor with similar applications, which are built on other design

principles. The tests show how the design affects performance; the test results are discussed

at the end of this chapter.

8.1 Experiment overview

8.1.1 Testing environment

The tests were run on an Intel Pentium M processor 1400MHz with 1536 MB of RAM. The

operational system was Linux (i386) with kernel version 2.6.12. The Java Virtual Machine

was implemented by Sun Microsystems Inc., version 1.5.0 01-b08. The RDBMS for storing

data was MySQL server 5.0.30-Debian 1.

All tests were performed within a simple Java benchmarking framework called JBench [60].

JBench provides an easy way to compare Java algorithms for speed. In JBench, we used a

timer based on the native JVM profiling API to obtain more accurate times. This timer

reports the actual CPU time spent executing code in the test case thread rather than the

wall-clock time, which is affected by CPU load. The granularity of the timer was 10ms.

8.1.2 Compared software

We compared five different systems in our experiments: three tools for the RDB to RDF

transformation (METAmorphoses, D2RQ and SquirrelRDF) and two native RDF repos-

itories with RDB back-end (Jena and Sesame1). Moreover, we performed two different

tasks with D2RQ and Jena in the most of tests - we queried dataset with both SPARQL

and graph API.

CHAPTER 8. PERFORMANCE ANALYSIS 97

8.1.2.1 METAmorphoses v.0.2.5

The METAmorphoses processor is the data transformation tool developed in this work

and its comprehensive description is found in Chapter 7. We created a schema mapping

between the relational schema of the experimental dataset and RDFS ontology and then

queried the dataset using our template documents as queries.

8.1.2.2 D2RQ v0.5

D2RQ [85] is a plug-in for the Jena Semantic Web toolkit, which uses the mappings to

rewrite Jena API calls to SQL queries and then transmits query results as RDF triples to

the higher layers of the Jena framework. Using D2RQ mapping, it is possible to access

relational database as a virtual RDF graph via classical Jena API. In this way the relational

database can be queried by SPARQL [79] or find(s p o) functions and the result is an

RDF. When testing D2RQ, we performed two separate experiments: one with find(s p

o) functions and another with SPARQL. We ran D2RQ in Jena v2.5.1 in these tests.

8.1.2.3 SquirrelRDF

SquirrelRDF [89] is a tool which allows relational databases to be queried using SPARQL.

It provides a tool that creates a rough mapping for a database schema (this is just the

näıve RDB to RDF mapping, described in [7], which does not consider ontologies) and a

set of different SPARQL interfaces. The result of the SPARQL query over RDB is RDF.

SquirrelRDF requires Jena v2.4 and we used its API to perform SPARQL queries in our

experiments.

8.1.2.4 Jena v2.5.1 (persistent DB model)

Jena [22] is a Java framework for building Semantic Web applications. It provides a

programmer environment for RDF, RDFS, SPARQL and includes a rule-based inference

engine. Jena can also store RDF data persistently in relational databases. We stored

testing dataset in such a persistent storage (backed by MySQL RDBMS) and then we

performed the exact same experiments as we did with D2RQ – we queried stored RDF

both by SPARQL and by find(s p o) function.

CHAPTER 8. PERFORMANCE ANALYSIS 98

8.1.2.5 Sesame v1.2.6 (persistent DB model)

Sesame [19] is an open source Java framework for storing, querying and reasoning with

RDF and RDF Schema. It can be used as a database for RDF and RDF Schema, or as a

Java library for applications that need to work with RDF internally. Sesame provides also

relational storage for RDF data (so called RDBMS-Sail). We uploaded our testing RDF

dataset to the Sesame persistent datastore (backed by MySQL RDBMS) and queried it

with SeRQL (the internal query language of Sesame) in our experiments.

8.1.3 Testing dataset

The dataset used for the benchmarks is a XML dump of DBLP computer science bibliogra-

phy [68]. XML was converted into a SQL database dump and into an RDF representation1.

The SQL version of the dataset consists of six tables (InProceeding, Person, Proceeding,

Publisher, RelationPersonInProceeding, and Series) without indices and contains

881,876 records. These relational data were stored in MySQL database and employed

while testing METAmorphoses, D2RQ, and SquirrelRDF.

The RDF representation of DBLP contains 1,608,344 statements, and was loaded to rela-

tional back-ends of Jena2 and Sesame1 to test these systems.

To obtain more granular data, we created the tables Proceeding500 and Proceeding1500,

which contain, respectively, 500 and 1500 records from the table Proceeding. Then we

added these data to the RDF version of the dataset.

8.1.4 Experiment methodology

To compare the tools listed above we used micro-benchmarks. The measured aspect was

the time of an RDF production on a given query. Each test task consisted of (i) preliminary

phase, where the source data, query engine, and query were prepared, and (ii) measured

phase, where the query was executed and resulting RDF was written to standard output in

the RDF/XML syntax (we also decided to measure RDF output because our primary goal

is an RDF publishing). According to granularity of the benchmarking tool (10ms) and the

high speed of query executions, we executed a query 100 times in a measured phase of each

1The data were transformed and provided for our purposes by Richard Cyganiak from Freie Universität
in Berlin, Germany.

CHAPTER 8. PERFORMANCE ANALYSIS 99

task.

2-15 tasks (this number was assessed experimentally) were executed before each measured

task as a warm-up in order to avoid JVM performance unbalance. After each task, all of

its memory references and hardware resources were released.

A test consisted of the same five tasks executed in a row and its result was an arithmetic

mean computed from the five task times. Each test was performed for all tested systems.

8.2 Experiments and results

In this section we describe the tests and their results. Testing queries are described in

SPARQL formal terminology, although they vary according to the tested system. In the

case of SPARQL and SeRQL queries we used CONSTRUCT form so that the result was a

graph. We also used CONSTRUCT form in the cases of METAmorphoses templates and

Jena Graph API.

To compare various aspects of RDF production, we divided our tests into three groups. In

these experimental sets we tested RDF production according to (i) result size, (ii) query

graph pattern complexity, and (iii) query condition complexity.

The results of experiments, described in this section, are evaluated in the next section

(8.3).

8.2.1 Experiments with the result size

In this test set we performed a very simple query based on the following general graph

pattern:

(?s < rdf : type > < particular RDFS class URI >)

We applied this query to RDFS classes with different amounts of RDF individuals and we

analyzed the behaviour of tools according to the size of the resulting RDF graph.

We performed five tests in this group, , proceeding through all resources with type Series,

Publisher, Proceeding500, Proceeding1500 and Proceeding. The specific SPARQL

queries for these tests with the number of triples in the resulting graphs are displayed in

Table 8.1.

CHAPTER 8. PERFORMANCE ANALYSIS 100

Test Query Result
no. triples
1.1 CONSTRUCT * WHERE {?r rdf:type d:Series.} 24
1.2 CONSTRUCT * WHERE {?r rdf:type d:Publisher.} 64
1.3 CONSTRUCT * WHERE {?r rdf:type d:Proceeding500.} 500
1.4 CONSTRUCT * WHERE {?r rdf:type d:Proceeding1500.} 1500
1.5 CONSTRUCT * WHERE {?r rdf:type d:Proceeding.} 3007

Table 8.1: Tests with the result size: queries

The results of the tests are listed in Table 8.2. Figure 8.1 shows the relation between test

time and the amount of resulting data.

Test no. (number of result triples)
System 1.1 (20) 1.2 (64) 1.3 (500) 1.4 (1500) 1.5 (3007)
METAmorphoses 84 230 1840 5692 13124
SquirrelRDF 830 1314 5180 16228 42504
D2RQ SPARQL 522 1332 7730 25530 45704
Jena SPARQL 482 1444 8296 27478 49968
D2RQL Graph API 366 1134 6434 20922 38253
Jena Graph API 368 1028 6902 22874 42588
Sesame1 SeRQL 194 423 2144 6624 12826

Table 8.2: Tests with the result size: results (times in ms)

8.2.2 Experiments with the graph pattern complexity

Test queries from this group consist of one graph pattern matching condition, which iden-

tifies exactly one RDF resource:

(?s < my ontology : hasT itle > ”TITLE”̂ ˆxsd : string)

These queries differ in the amount of resources and literals linked by graph patterns in the

query. The size of the resulting RDF graph does not differ significantly in these queries

and thus we can compare tools according to the complexity of the query graph pattern.

The graph patterns are depicted in Figure 8.2, test results are listed in Table 8.3. Graph in

Figure 8.3 shows the relation between the graph pattern complexity and RDF production

time.

CHAPTER 8. PERFORMANCE ANALYSIS 101

Figure 8.1: Test times rise with the result size

Test no. (number of result triples)
System 2.1 (2) 2.2 (4) 2.3 (6) 2.4 (8)
METAmorphoses 28 76 110 124
SquirrelRDF 640 678 768 808
D2RQ SPARQL 252 426 674 850
Jena SPARQL 212 360 456 552
D2RQL Graph API 106 224 434 506
Jena Graph API 94 150 204 262
Sesame1 SeRQL 100 198 272 324

Table 8.3: Tests with the graph pattern complexity: results (times in ms)

8.2.3 Experiments with the query condition complexity

The tests in the third test set have a very simple graph pattern and they refer to individuals

from only one ontology class. These tests differ in number and type of query conditions.

We performed these tests only with five systems; we omitted Jena and D2RQ graph API

because this API does not allow for straightforward queries with more conditions.

In SPARQL, there are two ways of restricting possible solutions of a query: graph pattern

matching and constraining values. This test set contains four tests that combine these

CHAPTER 8. PERFORMANCE ANALYSIS 102

?inProc

"TITLE"

?pages
?inProc

"TITLE"

?pages

?proc ?title

?year

?inProc

"TITLE"

?pages

?proc ?title

?year

Test 2.1 Test 2.2

Test 2.3

?author ?name

?inProc

"TITLE"

?pages

?proc ?title

?year

Test 2.4

?author ?name

?publisher ?title

Figure 8.2: Tests with the graph pattern complexity: graph patterns

conditions in various ways. The size of resulting RDF is very small so that the tests are

focused on query algorithm performance.

The test queries are depicted in Figure 8.4. The first query (test 3.1) contains a single

graph pattern matching condition (similar to queries from the second test set) and the

resulting graph contains eight triples. The second query (test 3.2) adds one graph pattern

matching condition to the first query and fetches two triples from the dataset. The query

in test 3.3 uses a condition with a constraining value to obtain the same result as test 3.2.

The last query (test 3.4) combines conditions from test 3.1 and 3.3. The test times are

listed in Table 8.4.

CHAPTER 8. PERFORMANCE ANALYSIS 103

Figure 8.3: Test times rise with the graph pattern complexity

Test no. (number of result triples)
System 3.1 (8) 3.2 (2) 3.3 (2) 3.4 (2)
METAmorphoses 78 36 30 32
SquirrelRDF 636 582 9670 598
D2RQ SPARQL 618 336 17480 360
Jena SPARQL 544 240 30794 232
Sesame1 SeRQL 238 124 110 126

Table 8.4: Tests with the query condition complexity: results (times in ms)

8.3 Discussion

The test results show that our approach (METAmorphoses) was the fastest one in almost

all of the tests (except in test 1.5, in which Sesame1 had slightly better performance).

In the first test set, all systems have approximately linear computation performance, as

shown in Figure 8.1. The relation between the result size and performance is illustrated in

Table 8.5, which contains average times for producing one triple (100 times).

CHAPTER 8. PERFORMANCE ANALYSIS 104

?proc ?title

?year

"22"

hasSeriesId

Test 3.1

?proc ?title

?year

"22"

hasSeriesId

Test 3.2

?proc ?title

?year

"22"

hasSeriesId

Test 3.4

?proc ?title

?year

?isbn

hasIsbn

Test 3.3

"22"

hasEditorId

FILTER ?isbn = "981-02-1055-8"

?isbn FILTER ?isbn = "981-02-1055-8"

hasIsbn

Figure 8.4: Tests with the query condition complexity: graph patterns

Test no. (number of result triples)
System 1.1 (20) 1.2 (64) 1.3 (500) 1.4 (1500) 1.5 (3007)
METAmorphoses 3,5 2,67 3,68 3,79 4,36
SquirrelRDF 34,58 15,28 10,36 10,82 14,14
D2RQ SPARQL 21,75 15,49 15,46 17,02 15,2
Jena SPARQL 20,08 16,79 16,59 18,32 16,62
D2RQL Graph API 15,25 13,19 12,87 13,95 12,72
Jena Graph API 15,33 11,95 13,8 15,25 14,16
Sesame1 SeRQL 8,08 4,92 4,29 4,42 4,27

Table 8.5: Time (in ms) for producing one triple (100 times), which is based on the first
test set

These times are almost identical but do vary between systems. Interestingly, the time-

for-one-triple index is slightly higher in test 1.1 than in the other systems. We reason

that this is caused by a starting phase of the query execution, which does not depend on

the result size and is evident in the query with a small resulting RDF (24 triples). The

relatively shortest starting phase appears with METAmorphoses and the longest is with

CHAPTER 8. PERFORMANCE ANALYSIS 105

SquirrelRDF (more than twice as high as in the other tests).

Considering this starting phase, there is no reason to compute this index in the second and

third test set; the resulting RDF is very small in these tests (2-8 triples).

The METAmorphoses was also the fastest system in the second test set. It maintained

its high performance and its small test time growth throughout the increasingly complex

graph pattern.

The METAmorphoses also has the best performance in all but the third test set (Table

8.4). Sesame1 is a bit slower but the similarity of its results with those of METAmorphoses

is interesting. On the other hand, the other three systems are much slower. This is obvious

in test 3.3, where the result times are very high. This is probably caused by non-optimised

constraint value handling in the Jena SPARQL query engine, which is used by all of these

systems.

It is interesting to observe that all systems based on Jena (SquirrelRDF, D2RQ, and Jena

itself) have very similar results, especially in the first and third test sets. We can explain

this by the identical algorithms for graph composition (in the first test set) and SPARQL

query execution (in the third test set). This means that all solutions built above Jena

share its advantages and disadvantages and are limited by its performance. Sesame1 and

METAmorphoses had considerably different (and usually much better) test performances.

Sesame1 is obviously optimised for querying big amounts of data and METAmorphoses

was designed to be a fast data transformation tool.

According to the test results, we can say that our concepts implemented in METAmor-

phoses show higher performance compared to other tested data transformation systems

(D2RQ and SquirrelRDF). Our assumption that RDF API are performance-limiting was

correct: our system is faster than those that use RDF API.

METAmorphoses is also faster than tested native RDF persistent storages (persistent DB

model in Jena and Sesame1). It does not provide the standard SPARQL interface but

it supports all RDF and RDFS features and demonstrates higher performance. This is a

very interesting point. We proved that if one needs only to publish relational data in RDF,

there is no need to migrate RDB into RDF repository and then query this repository. On-

the-fly data transformation (using METAmorphoses) can be achieved faster than queries

over RDF repository.

We did not measure RAM footprint of the tested systems. However, METAmorphoses does

CHAPTER 8. PERFORMANCE ANALYSIS 106

not build RDF graph in memory (see Section 7.1.3), thus its memory consumption does

not depend on the size of a resulting RDF. All other tested systems first create resulting

graph in memory and then serialise it, which means that their RAM footprint does depend

on the size of resulting RDF graph.

There are few similar comparison experiments for RDF tools because, as mentioned in [50],

the lack of a common query language and access method make benchmarking RDF stores

a time-consuming task. However, several attempts are described in [49], [28], or [92]. Due

to different methodologies and tested systems, it is very difficult to compare results, but

our performance comparison can be considered one of the most complex due to the number

of tested systems and performed tests.

8.4 Summary

In this chapter we performed three test sets focused on computational performance to com-

pare our ideas implemented in METAmorphoses with other RDB to RDF transformation

tools (D2RQ and SquirrelRDF) and native RDF stores with RDB back-end (Jena and

Sesame1). METAmorphoses had the best performance in most tests (12 out of 13) and

also showed dominance in the performance aspects discussed in the previous section.

This proves that our concept of data transformation has higher performance than other

data transformation solutions as well as native RDF repositories. This means that on-

the-fly data transformation based on our ideas can be done faster than queries

over native RDF repository. Thus it is not necessary to migrate relational data

into RDF repositories in order to publish them later as RDF.

Considering this, we can say that we fulfilled the partial goal performance, de-

fined in Section 3.3 and proved the performance advantages of our data trans-

formation approach.

CHAPTER 9. CASE STUDIES 107

9 Case studies

We conducted various experiments with the implemented system in the process of com-

pleting this thesis. These experiments were designed to prove our ideas in a practical

environment and to test implementation and usability issues.

Some of the experiments became independent projects based on the METAmophoses.

These case studies were supported by grants and their results were also published.

We would like to express gratitude to our supporters and co-workers, who are mentioned

in detail later in this chapter in the case studies description.

9.1 SeWebis – department of computer science on the semantic

web

The design and implementation of the very first version of METAmorphoses was completed

with its experimental deployment. We deployed the system in order to provide RDF

metadata about the Department of Computer Science and Engineering at CTU in Prague.

The name of the application is SeWebis1.

database

WWW

Servlet

container

Mapping

processor

Web server

HTML RDFreferences

Figure 9.1: METAmorphoses extends a dynamic web site

The web portal of the department presents information about people, publications,

projects, and education. Data is stored in a relational database and presented as

1Webis is the name of our department information portal and Se stands for Semantic

CHAPTER 9. CASE STUDIES 108

dynamically-generated HTML pages. To extend this web presentation, we first created

an OWL ontology that responds to the structure of our department. Then we mapped the

existing database schema according to this ontology. We created one mapping document

and several templates over this mapping, for example, one template document about per-

sons with their projects and publications, one for publications and their authors, and so

on. The metadata generated by the processor were published on the web using RDF-Shout.

In doing this, we produced two parallel presentations of our department - one consisting

of HTML pages for human users and another consisting of RDF documents for computer

applications and software agents (see Figure 9.1). These presentations are created from

the same data-source so they carry equivalent information. The presentations are linked

together with references.

This project was partially supported by FRVŠ grant agency under grant no. 1804/2005

and by internal grant of Czech Technical University (IGS) under the external number

CTU0507513.

9.2 Semantic information retrieval

The RDF data produced in the project SeWebis provided a semantic web platform for

further experiments. This environment contains over 200 HTML pages linked to RDF

documents with the same information.

In this annotated hyperspace we experimented with semantic information retrieval. We

built the search engine, which crawls through HTML pages and digs for linked RDF re-

sources. The crawler downloads RDF, indexes it, and stores it in the RDF knowledge base.

RDF statements are indexed by a URL of the web page to which they belong, thus there

is a link between RDF data and web pages in the knowledge base.

End-user can query this knowledge base by means of the simple web interface with the

semantic search capability. This interface (depicted in Figure 9.2) uses terms from the

ontology to question data in the RDF repository. However, a result of the query is not

only a set of RDF statements but also a set of links to HTML web pages that are relevant

to these statements.

CHAPTER 9. CASE STUDIES 109

Figure 9.2: Prototype of the semantic search engine user interface

9.3 Publication portal

After establishing the data environment and means for data aggregation and storage, de-

scribed in the previous sections, we built an information portal capable of aggregating RDF

metadata about academic publications.

This portal collected metadata from the SeWebis by using crawlers. Fetched metadata are

stored in a knowledge base and published on the portal front-end. The portal serves infor-

mation about academic publications and their authors. The information can be browsed,

sorted, and searched by institutions, authors, publications, dates, and so on. A user can

browse or search aggregated information in a single place. Moreover, all of this information

is presented in many different formats: HTML, bibTex, plain text, or RDF defined by vari-

ous publication ontologies. This is possible because RDF can be automatically transformed

into any format.

This case is very limited: we fetch information from only one website and thus we cannot

speak about a real data integration. However, the experiment proved the usability of the

concept and its underlying technologies. We now know it is possible to integrate knowledge

from the web using ontologies and semantic web metadata. Moreover, in this case study we

CHAPTER 9. CASE STUDIES 110

first conducted informal usability tests with the METAmorphoses concept and we received

satisfactory results.

This project has been supported by the grant of the Czech Grant Agency no. 201/06/0648.

The implementation work was mainly performed by undergraduate students Frantǐsek

Pernička and Jan Ledvinka within their bachelor theses ([77], [66]), which were supervised

by the author of this work.

CHAPTER 10. CONCLUSION 111

10 Conclusion

10.1 Thesis summary

This thesis presents a new model for data transformation from a relational database to an

ontology-based RDF metadata. Such transformation allows one to publish relational data

without explicit semantics as RDF data with explicit semantics defined by an ontology. The

model divides the transformation process into two phases: schema mapping and instance

transformation.

The theoretical part of this work includes:

- The identification of correspondences between the relational model and RDFS and

also between the structure of relational data and RDF (Section 4.3).

- The design of a formal model architecture (Chapter 4), which is divided into two

layers: one for schema mapping and the another for instance transformation based

on the schema mapping.

- The proposal of two XML languages based on the formal model (Chapter 5). Schema

mapping language is capable of describing schema mapping between relational schema

and RDFS, while template language is for creating RDF documents from a relational

database.

- The proposal of a high performance algorithm for the data transformation (Sections

4.7 and 7.1.2).

We verified our theoretical approach by conducting a formal examination of the model

capability. We showed that a result of our data transformation is an RDF document with

a connection to the used ontology (Section 4.8). We also explored relational completeness

of our approach and its compatibility with RDF and RDFS standards. We showed that

our model supports all features of used formalisms and data models (Chapter 6). Our

model also supports a basic set of OWL features (Section 6.4 and Appendix B).

A data transformation system was designed according to the proposed formal model, was

implemented and was verified. Its design, implementation and used algorithm are described

in Chapter 7 along with two supporting tools (a server for publishing RDF metadata on

the web and a schema mapping editor with GUI). This system was employed in various

CHAPTER 10. CONCLUSION 112

case studies to prove its usability and to investigate practical aspects of the semantic web

(Chapter 9). The extensive performance tests were executed to compare our tool with

other approaches (Chapter 8).

In addition to the main goal of our thesis, which was a data transformation, we strived for

partial goals: performance and usability (Section 3.3). The usability issue is discussed in

Section 7.1.4. A high performance of the data transformation is discussed in Section 7.1.3

and proved in the experimental evaluation (Chapter 8).

10.2 Contribution summary

The main theoretical contributions of the thesis are the formal proposal of a novel model

for data transformation, two XML languages for transformation description, and high

performance algorithm. The model itself was also formally verified.

The practical outcome of the work is the implementation of a data transformation processor

and supporting tools that enable web developers to enrich their RDB-backed websites with

RDF metadata1. This system was deployed in various case studies to prove our concepts

and the performance analysis was executed to compare our system with other approaches.

Another very important contribution is a conclusion of the performance analysis. We

showed that our approach is faster not only than similar data transformation tools but also

than native RDF repositories. This means that an on-the-fly data transformation based

on our concepts can be executed faster than queries over current native RDF repositories.

Proving this, we can conclude that it is not necessary to migrate relational data to RDF

repositories in order to publish them later as RDF.

10.3 Future work

The results of the thesis invite us to continue our research. There are several points that

can be improved upon or explored in future work.

The proposed formal model is aimed at specific data formalisms: relational model, RDF,

and RDFS. It might be interesting to generalise the model formally so that it can be

used for a data transformation between various formalisms (between OODB and RDF, for

1The system is called METAmorphoses and is available at http://metamorphoses.sourceforge.net/.

CHAPTER 10. CONCLUSION 113

example).

Another possibility is to enable reverse data migration, from RDF to RDB. The schema

mapping layer provides all necessary features for this migration, but the point is to design

a reverse instance transformation layer.

The support for a large portion of OWL is proposed in this thesis but many important

features of OWL are not yet supported. Incorporating the support for OWL restrictions

is one of the challenges for future research.

The template documents and template language are only one possible interface of our

system. It could be interesting to provide query interface for some standard RDF query

language on top of the schema mapping layer.

The system implementation also requires some improvement: the processor lacks a

database pool and a good logging system, and some performance issues could be im-

proved. In the future, we plan to provide JSP custom tag lib as an interface for the

template processor and we are currently working on stand-alone PHP implementation of

the model.

Since we put a strong effort into making our system user-friendly, it could be interesting

to formally verify its usability. Such usability testing is another potential field for future

work.

10.4 General conclusion

The semantic web intends to bring more machine-understandable meaning to the world

wide web content. However, its underlying idea has nothing to do with machines, comput-

ers, or software agents. Its very profound purpose is to improve the web so that it is more

transparent, accessible, and useful for human beings; in other words, to improve commu-

nication and information interchange. We believe in this purpose and thus we dedicate to

it this thesis. To achieve the goals of the semantic web it is neccessary to spread semantic

web metadata over the web. The aim of this thesis was to create a means for a transfor-

mation of traditional data resources (i.e. relational data) to semantic web metadata and

to provide tools for such a transformation.

We can observe many changes induced by the evolution of the web, including changes in

social structures, business patterns, work processes, science, policy, and art. New tech-

CHAPTER 10. CONCLUSION 114

nologies quickly emerge and disappear and leave behind only the changes they introduced.

Semantic web technologies may also disappear in time after they accomplish their purpose,

but the idea of cooperation and understanding will continue to grow. Technology vastly

improves human communication and will do so much more in the future. Our work is

intended to be one step in this direction.

CHAPTER 11. BIBLIOGRAPHY 115

11 Bibliography

[1] J. Albert, R. Ahmed, M. A. Ketabchi, W. Kent, and M.-C. Shan. Automatic impor-

tation of relational schemas in pegasus. In RIDE-IMS, pages 105–113, 1993.

[2] P. Aubrecht. Ontology Transformations Between Formalisms. Dissertation thesis.

Czech Technical University in Prague., 2005.

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies

for database schema integration. ACM Comput. Surv., 18(4):323–364, 1986.

[4] D. Beckett. RDF Test Cases. W3C Recommendation. Available at:

http://www.w3.org/TR/rdf-testcases/#ntriples, February 2004.

[5] D. Beckett. RDF/XML Syntax Specification (Revised).

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/, February

2004.

[6] D. Beckett. Turtle - Terse RDF Triple Language.

http://www.dajobe.org/2004/01/turtle/, January 2004.

[7] D. Beckett and J. Grant. Semantic Web Scalability and Storage: Map-

ping Semantic Web Data with RDBMSes. SWAD-Europe deliverable,

http://www.w3.org/2001/sw/Europe/reports/scalable rdbms mapping report,

February 2003.

[8] A. Behm, A. Geppert, and K. R. Dittrich. On the migration of relational schemas

and data to object-oriented database systems. In J. Györkös, M. Krisper, and H. C.

Mayr, editors, Proc. 5th International Conference on Re-Technologies for Informa-

tion Systems, pages 13–33, Klagenfurt, Austria, 1997. Oesterreichische Computer

Gesellschaft.

[9] T. Berners-Lee. Information Management: A Proposal.

http://www.w3.org/History/1989/proposal.html, March 1989.

[10] T. Berners-Lee. Relational Databases on the Semantic Web.

http://www.w3.org/DesignIssues/RDB-RDF.html, September 1998.

[11] T. Berners-Lee. Semantic Web on XML. In XML 2000, Washington DC, USA,

December 2000.

CHAPTER 11. BIBLIOGRAPHY 116

[12] T. Berners-Lee. Semantic Web for Industry (Keynote speach). In 5th International

Semantic Web Conference (ISWC2005), Industry day, November 2005.

[13] T. Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/Notation3, March

2006.

[14] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,

284(5), May 2001.

[15] E. Bertino and L. Martino. Object-Oriented Database Systems: Concepts and Archi-

tectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.

[16] E. Bozsak et al. KAON - Towards a Large Scale Semantic web. In Third International

Conference E-Commerce and Web Technologies, EC-Web 2002, France, 2002.

[17] D. Brickley. RDF Vocabulary Description Language 1.0: RDF Schema.

http://www.w3.org/TR/rdf-schema/, February 2004.

[18] D. Brickley and L. Miller. FOAF Vocabulary Specification.

http://xmlns.com/foaf/0.1/, March 2004.

[19] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture

for storing and querying rdf and rdf schema. In Proceedings of the First International

Semantic Web Conference, page 5468. Springer, 2002.

[20] W. Bush. As We May Think. The Atlantic Monthly, (6), 1945.

[21] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and

trust. In WWW ’05: Proceedings of the 14th international conference on World Wide

Web, pages 613–622, New York, NY, USA, 2005. ACM Press.

[22] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.

Jena: implementing the semantic web recommendations. In WWW Alt. ’04: Pro-

ceedings of the 13th international World Wide Web conference on Alternate track

papers & posters, pages 74–83, New York, NY, USA, 2004. ACM Press.

[23] H. Chen, Z. Wu, G. Zheng, and Y. Mao. Rdf-based schema mediation for database

grid. In GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop

on Grid Computing (GRID’04), pages 456–460, Washington, DC, USA, 2004. IEEE

Computer Society.

CHAPTER 11. BIBLIOGRAPHY 117

[24] F. Ciravegna. Adaptive Information Extraction from Text by Rule Induction and

Generalisation. In Seventeenth International Conference on Artificial Intelligence

(IJCAI-01), pages 1251–1256, San Francisco, CA, USA, August 2001.

[25] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communi-

cations of the ACM, 13(6):377–387, 1970.

[26] E. F. Codd. Relational completeness of data base sublanguages. In: R. Rustin (ed.):

Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987, San Jose,

California, 1972.

[27] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Unrav-

eling the web services web: An introduction to soap, wsdl, and uddi. IEEE Internet

Computing, 6(2):86–93, March 2002.

[28] R. Cyganiak. Benchmarking D2RQ v0.2. Technical Report.Freie Universitt Berlin,

Germany. http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq/benchmarks/, June 2004.

[29] Q. D. and K. D. How to Make a Semantic Web Browser. In 13th international

conference on World Wide Web, WWW2004, pages 255–265, 2004.

[30] DCMI. Dublin Core Metadata Initiative. Information about the initiative available

at: http://dublincore.org/about/, March 2001.

[31] M. Dean and G. Schreiber. OWL Web Ontology Language Reference.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/, February 2004.

[32] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi, and

J. Sachs. Swoogle: a search and metadata engine for the semantic web. In CIKM

’04: Proceedings of the thirteenth ACM conference on Information and knowledge

management, pages 652–659, New York, NY, USA, 2004. ACM Press.

[33] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. W3C

Recommendation. http://www.w3.org/TR/xmlschema-0/, October 2004.

[34] D. Fensel et al. Spinning the Semantic Web. The MIT Press, 2003.

[35] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. Patel-Schneider.

Oil: An ontology infrastructure for the semantic web, 2001.

CHAPTER 11. BIBLIOGRAPHY 118

[36] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, 1999.

[37] R. T. Fielding. Architectural styles and the design of network-based software archi-

tectures. PhD thesis, 2000. Chair-Richard N. Taylor.

[38] M. Fisher, J. Ellis, and J. C. Bruce. JDBC API Tutorial and Reference. Pearson

Education, 2003.

[39] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping

schemes for storing XML data in a relational database. Technical report, May 1999.

[40] F. Frasincar, G.-J. Houben, R. Vdovjak, and P. Barna. RAL: An Algebra for Query-

ing RDF. World Wide Web: Internet and Web Information Systems, (7):83–109,

2004.

[41] E. Gamma et al. Design Patterns. Addison-Wesley Professional, 1995.

[42] J. Golbeck, M. Grove, B. Parsia, A. Kalyanpur, and J. Hendler. New Tools for the

Semantic Web. In EKAW 2002, pages 392–400, 2002.

[43] C. F. Goldfarb and P. Prescod. The XML handbook. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1998.

[44] J. Goodwill. Apache Jakarta-Tomcat. Apress, Berkely, CA, USA, 2002.

[45] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge

Acquisition, 2(5):199–220, 1993.

[46] J.-L. Hainaut, M. Chandelon, C. Tonneau, and M. Joris. Contribution to a theory

of database reverse engineering. In WCRE ’93: Proceedings of the 1993 Working

Conference on Reverse Engineering, (Baltimore, Maryland; May 21-23, 1993), pages

161–170. IEEE Computer Society Press (Order Number 3780-02), May 1993.

[47] S. Handschuh and S. Staab. Authoring and Annotation of Web Pages in CREAM. In

WWW2002 International Conference, pages 462–473, Honolulu, Hawaii, USA, May

2002.

[48] S. Handschuh, S. Staab, and R. Volz. On Deep Annotation. In 12th International

World Wide Web Conference, WWW 2003, 2003.

CHAPTER 11. BIBLIOGRAPHY 119

[49] A. Harth and S. Decker. Optimized index structures for querying RDF from the

Web. In Proceedings of LA-WEB 2005, November 2005.

[50] A. Harth and S. Decker. Yet Another RDF Store: Perfect Index Structures for

Storing Semantic Web Data With Contexts. Research Paper, Digital Enterprise

Research Institute, Galway, Ireland, 2005.

[51] P. Hayes. RDF Semantics. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/,

February 2004.

[52] J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic,

Distributed Environment. Dissertation thesis. University of Maryland., 2001.

[53] J. Hendler and D. L. McGuinness. The DARPA Agent Markup Language. IEEE

Intelligent Systems, 15(6):67–73, 2000.

[54] J. Hjelm. Creating the Semantic Web with RDF. Wiley Computer Publishing, New

York, 2001.

[55] J. Hofman. Mapping relational database schema to rdf. Research project report at

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,

CTU in Prague, September 2006.

[56] I. Horrocks. DAML+OIL: a description logic for the semantic web. IEEE Data

Engineering Bulletin, 25(1):4–9, 2002.

[57] E. Hyvonen et al. Finnish Museums on the Semantic Web: The user’s Perspective on

MuseumFinland. In Museums and the Web Conference 2004, Arlington, VA, USA,

2002.

[58] ISO (International Organization for Standardization). Information processing –

text and office systems – Standard Generalized Markup Language (SGML. ISO

8879:1986(E), 1986.

[59] J. H. Jahnke, W. Schäfer, and A. Zündorf. A design environment for

migrating relational to object oriented database systems. In ICSM ’96: Proceed-

ings of the 1996 International Conference on Software Maintenance, pages 163–170,

Washington, DC, USA, 1996. IEEE Computer Society.

CHAPTER 11. BIBLIOGRAPHY 120

[60] Jon Skeet. JBench Manual. http://www.yoda.arachsys.com/java/jbench/docs/, May

2006.

[61] J. Kahan, M.-R. Koivunen, E. Prud’Hommeaux, and R. R. Swick. Annotea: An

open rdf infrastructure for shared web annotations. In The Tenth International

World Wide Web Conference (WWW 2001), pages 623–632, Hong Kong, 2001.

[62] V. Kashyap. Design and creation of ontologies for environmental information re-

trieval. In Proceedings of the 12th Workshop on Knowledge Acquisition, Modeling

and Management (KAW’99), october 1999.

[63] G. Klyne and C. J. J. Resource Description Framework (RDF): Concepts and Ab-

stract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, Febru-

ary 2004.

[64] M. Korotkiy and J. L. Top. From relational data to rdfs models. In International

Conference on Web Engineering 2004, Munich, 2004.

[65] O. Lassila and R. R. Swick. Resource description framework (RDF) model and syn-

tax specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, Febru-

ary 1999.

[66] J. Ledvinka. Mapping of Relational Database Content into Semantic Web Metadata.

Bachelor Thesis at FEE, Czech Technical University in Prague, September 2006.

[67] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.

Lynch, J. Postel, L. G. Roberts, and S. Wolff. A Brief History of the Internet.

http://www.isoc.org/internet/history/brief.shtml, December 2003.

[68] M. Ley. DBLP Bibliography. http://www.informatik.uni-trier.de/ ley/db/, May

2003.

[69] M. Lytras. An interview with Eric Miller. SIGSEMIS: Semantic Web and Informa-

tion Systems, 1(2), July 2004.

[70] F. Manola and E. Miller. RDF Primer (Revised).

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, February 2004.

[71] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.

http://www.w3.org/TR/2004/REC-owl-features-20040210/, February 2004.

CHAPTER 11. BIBLIOGRAPHY 121

[72] S. B. Navathe and R. A. Elsmari. Fundamentals of Database Systems. Addison-

Wesley Longman Publishing Co. Inc., 2001.

[73] OASIS. RELAX NG Specification. OASIS Committee Specification.

http://relaxng.org/spec-20011203.html, December 2001.

[74] ODF Alliance. Open Document Format. Information about the initiative available

at: http://www.odfalliance.org/, May 2006.

[75] S. B. Palmer. RDF in HTML: Approaches. http://infomesh.net/2002/rdfinhtml/,

2002.

[76] S. Patrick and C. Jeremy. Trix : Rdf triples in xml. Technical Report HPL-2003-268,

2003.

[77] F. Pernička. Aggregation and Usage of RDF Metadata. Bachelor Thesis at FEE,

Czech Technical University in Prague, September 2006.

[78] E. Prud’hommeaux. Optimal RDF access to relational databases (W3C Technical

Report). http://www.w3.org/2004/04/30-RDF-RDB-access/, April 2004.

[79] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for

RDF. W3C Recommendation. http://www.w3.org/TR/2005/WD-rdf-sparql-query-

20050217/, February 2005.

[80] V. Raatikka and E. Hyvonen. Ontology-based semantic metadata validation. In

XML Finland 2002 Conference, Helsinky, Finland, 2002. HIIT Publications.

[81] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.

VLDB Journal: Very Large Data Bases, 10(4):334–350, december 2001.

[82] RSS-DEV working group. RDF Site Summary (RSS) 1.0. Information about the

initiative available at: http://web.resource.org/rss/1.0/, June 2000.

[83] A. Sahuguet and F. Azavant. Building intelligent Web applications using lightweight

wrappers. Knowledge Engineering, 36(3):283–316, 2001.

[84] M. C. Schraefel et al. CS AKTive space: representing computer sci-ence in the

semantic web. In 13th international conference on World Wide Web, WWW2004,

pages 384–392, 2004.

CHAPTER 11. BIBLIOGRAPHY 122

[85] A. Seaborne and C. Bizer. D2rq – treating non-rdf databases as virtual rdf graphs. In

Proceedings of the 3rd International Semantic Web Conference (ISWC2004), 2004.

[86] G. Shachor, A. Chace, and M. Rydin. JSP tag libraries. Manning Publications Co.,

Greenwich, CT, USA, 2001.

[87] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,

and B. Reinwald. Efficiently publishing relational data as XML documents. VLDB

Journal: Very Large Data Bases, 10(2–3):133–154, 2001.

[88] M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web Ontology Language

Guide. http://www.w3.org/TR/2004/REC-owl-guide-20040210/, February 2004.

[89] D. Steer. SquirrelRDF. http://jena.sourceforge.net/SquirrelRDF/.

[90] G. Stoilos, G. Stamou, V. Tzouvaras, J. Pan, and I. Horrocks. Fuzzy owl: Uncertainty

and the semantic web. International Workshop of OWL: Experiences and Directions,

Galway, 2005, 2005.

[91] N. Stojanovic, L. Stojanovic, and R. Volz. A reverse engineering approach for mi-

grating data-intensive web sites to the semantic web. In IIP 2002, Montreal, Canada,

2002.

[92] M. Streatfield and H. Glaser. Report on Summer Internship Work For the AKT

Project: Benchmarking RDF Triplestores. Technical Report. Electronics and Com-

puter Science, University of Southampton. http://eprints.aktors.org/437/, November

2005.

[93] R. Studer. The semantic web : Suppliers and customers (keynote). In Proceedings

of the 5rd International Semantic Web Conference (ISWC2006), 2006.

[94] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna.

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic

Markup. In EKAW 2002, pages 379–391, 2002.

[95] R. Volz, S. Handschuh, S. Staab, L. Stojanovic, and N. Stojanovic. Unveiling the hid-

den bride: Deep annotation for mapping and migrating legacy data to the semantic

web. Journal of Web Semantics, 2004.

CHAPTER 11. BIBLIOGRAPHY 123

[96] W3C HTML Working Group. XHTML 1.0 The Extensible HyperText Markup Lan-

guage (Second Edition). W3C Recommendation. http://www.w3.org/TR/xhtml1/,

August 2002.

[97] W3C MathML Working Group. Mathematical Markup Language (MathML) Version

2.0 (Second Edition). W3C Recommendation. http://www.w3.org/TR/2003/REC-

MathML2-20031021/, October 2003.

[98] W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 Specification. W3C

Recommendation. http://www.w3.org/TR/SVG11/, January 2003.

[99] N. Walsh. The DocBook Document Type, v4.5. OASIS Standard.

http://www.docbook.org/specs/docbook-4.5-spec.html, October 2006.

[100] Wikipedia authors. Social bookmarking (From Wikipedia, the free encyclopedia).

http://en.wikipedia.org/wiki/Social bookmarking, March 2007.

[101] Wikipedia authors. Wikipedia (From Wikipedia, the free encyclopedia).

http://en.wikipedia.org/wiki/Wikipedia, March 2007.

[102] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible

Markup Language (XML) 1.0 (Third Edition). http://www.w3.org/TR/2004/REC-

xml-20040204/, February 2004.

[103] W. Zhao and D. Kearney. Deriving architectures of web-based applications. In

Web Technologies and Applications: 5th Asia-Pacific Web Conference, APWeb 2003,

Xian, China, 2003. Springer.

CHAPTER 12. REFEREED PUBLICATIONS OF THE AUTHOR 124

12 Refereed publications of the author

[A.1] M. Švihla, I. Jeĺınek. Benchmarking RDF Production Tools. Accepted for 18th

International Conference on Database and Expert Systems Applications - DEXA ’07,

Regensburg, 2007. Lecture Notes in Computer Science by Springer Verlag. To appear.

[A.2] M. Švihla, I. Jeĺınek. Leveraging Semantic Web Technologies to Integrate Information

Related to Academic Papers. Proceedings of eChallenges e-2006, Dublin: IIMC

International Information Management Corporation Ltd, 2006, ISBN 1-905824-02-5.

[A.3] M. Švihla, I. Jeĺınek. The Database to RDF Mapping Model for an Easy Semantic

Extending of Dynamic Web Sites. Proceedings of the IADIS International Conference

WWW/Internet 2005 - Volume I, Lisboa: IADIS Press, 2005, vol. I, pp. 27-35. ISBN

972-8924-02-X.

[A.4] M. Švihla, I. Jeĺınek. Information life-cycle on the semantic web. DATAKON2005.

Brno: VUT, 2005, pp. 345-355. ISBN 80-210-3813-6.

[A.5] M. Švihla, I. Jeĺınek. Using Semantic Web Metadata for Advanced Web Information

Retrieval. First International Workshop on Representation and Analysis of Web

Space – RAWS-05, Ostrava - Poruba: VŠB - Technická univerzita Ostrava, 2005, pp.

85-89. ISBN 80-248-0864-1.

[A.6] M. Švihla, I. Jeĺınek. Improving Web Resources Processing by Distributed Semantic

Web Metadata. E-learning and the Knowledge Society 2005, Berlin, Germany, 2005,

pp. 83-94.

[A.7] M. Švihla, I. Jeĺınek. Transparent Knowledge Interchange on the Semantic Web.

Proceedings of the International Conference on Computer Systems and Technologies,

Rousse: Bulgarian Chapter of ACM, 2005, pp. 3A 4-1-3A 4-6. ISBN 954-9641-42-2.

CHAPTER 13. UNREFEREED PUBLICATIONS OF THE AUTHOR 125

13 Unrefereed publications of the author

[A.8] M. Švihla. The Semantic Web. (In Czech) A chapter in the book New generation

of web technologies. Editors M. Bureš, A. Morávek and I. Jeĺınek., WOX, Prague,

2005. 16 pages.

[A.9] M. Švihla, I. Jeĺınek. Semantic Extension of an University Information Portal. (In

Czech) International Conference on Education, Media, Technology (EMTECH 2005),

Praha: VUT, 2005, ISBN 80-01-03336-8.

[A.10] M. Švihla, I. Jeĺınek. Metamorphoses - SQL to RDF Mapping for Semantic Web.

18th International Conference on Systems for Automation of Engineering and Re-

search, Sofia, 2004, ISBN 954-438-428-6.

[A.11] M. Švihla, I. Jeĺınek. Two Layer Mapping from Database to RDF. Sixth Interna-

tional Scientific Conference Electronic Computers and Informatics ECI 2004, Košice,

Slovakia, 2004. ISBN 80-8073-150-0.

[A.12] M. Švihla, I. Jeĺınek. Semantic Web and Automatic Generation of its Content. (In

Czech.) Tvorba softwaru 2004, Ostrava, 2004. ISBN 80-85988-96-8.

APPENDIX A. SCHEMA MAPPING AND TEMPLATE DOCUMENT LISTINGS 126

A Schema mapping and template document listings

This chapter contains a complete mapping document, template document example based

on the mapping document and resulting RDF document.

A.1 Schema mapping document

The mapping document from Listing A.1 maps the ontology and database schema from

running example described in Section 5.1.

Listing A.1: Mapping document listing

<?xml version ="1.0" encoding ="iso -8859 -2"? >
<Mapping xmlns="http :// webing.felk.cvut.cz/metamorphoses/mapping">

<DatabaseConnection jdbcURL = "jdbc:mysql :// localhost/mm_sample"
jdbcDriver = "com.mysql.jdbc.Driver" username = "mm_user"
password =" mm_pass">

</DatabaseConnection >

<DocumentHeader >
<![CDATA[<?xml version ="1.0" encoding ="UTF -8"?>
<rdf:RDF
xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:rdfs="http ://www.w3.org /2000/01/ rdf -schema #"
xmlns:foaf="http :// xmlns.com/foaf /0.1/"
xmlns ="http ://www.sample.org/my/sample/ontology/">

]]>
</DocumentHeader >

<DocumentFoot >
<![CDATA[</rdf:RDF >]]>

</DocumentFoot >

<Class templateName =" person" rdfLabel =" Person" sql=" SELECT * FROM person
p, department d WHERE d.id = p.id_department">

<Attribute rdfLabel ="rdf:about"
prefix ="http :// webing.felk.cvut.cz/people /" sqlName =" username"/>

<ClassCondition templateName =" projectId" whereString ="p.id =
pp.person_id and pp.project_id =" tableString =" person_project pp" />

<ClassCondition templateName =" username" whereString ="p.username =" />
<Variable templateName =" personIdVariable" sqlName ="p.id"/>

<Property templateName =" surname" rdfLabel =" surname"
sqlName =" family_name">
<Attribute rdfLabel ="rdf:datatype"

prefix ="http :// www.w3.org /2001/ XMLSchema#string"/>
</Property >
<Property templateName =" department" rdfLabel =" hasDepartment"

sqlName ="d.name">

APPENDIX A. SCHEMA MAPPING AND TEMPLATE DOCUMENT LISTINGS 127

<Attribute rdfLabel ="rdf:datatype"
prefix ="http :// www.w3.org /2001/ XMLSchema#string"/>

</Property >
<Property templateName =" currentProject" rdfLabel =" currentProject"

containerType ="Bag" />
</Class >

<Class templateName =" project" rdfLabel =" Project" sql=" SELECT * FROM
projects pro">

<Attribute rdfLabel ="rdf:about" prefix ="http :// webing.felk.cvut.cz/
projects /" sqlName ="pro.id"/>

<ClassCondition templateName =" personId" whereString ="pro.id =
pp.project_id AND pp.person_id ="
tableString =" person_project pp">

</ClassCondition >

<Property templateName =" participants" rdfLabel =" participants"
containerType ="Bag" />

<Property templateName =" homepage" rdfLabel =" homepage"
sqlName ="pro.web">
<Attribute rdfLabel ="rdf:datatype"

prefix ="http :// www.w3.org /2001/ XMLSchema#string" />
</Property >

</Class >

</Mapping >

A.2 Template document

The following template document is based on the mapping document from Listing A.1.

Listing A.2: Template document listing for a particular person
<?xml version ="1.0"? >
<Template xmlns:mmt="http :// webing.felk.cvut.cz/metamorphoses/template">
<Mapping url ="/ url/to/mapping /" />

<PutInstance name=" person" id="1">
<Condition name=" username">svihlm1 </Condition >
<PutProperty name=" surname" />
<PutProperty name=" currentProject" nodeId =" projectBagId">

<PutInstance name=" project">
<Condition name=" personId">

<Variable id="1" name=" personIdVariable" />
</Condition >
<PutProperty name=" projectHomepage" />

</PutInstance >
</PutProperty >

</PutInstance >

</Template >

APPENDIX A. SCHEMA MAPPING AND TEMPLATE DOCUMENT LISTINGS 128

A.3 Resulting RDF

The RDF listing is the result of the template document from the previous section.

Listing A.3: RDF result for the template document A.2

<?xml version ="1.0" encoding ="UTF -8"?>
<rdf:RDF xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:rdfs="http ://www.w3.org /2000/01/ rdf -schema #"
xmlns:foaf="http :// xmlns.com/foaf /0.1/"
xmlns ="http ://www.sample.org/my/sample/ontology/">

<Person rdf:about="http :// webing.felk.cvut.cz/people/svihlm1">
<surname rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#string">Svihla
</surname >
<currentProject >
<rdf:Bag rdf:nodeID =" projectBagId">
<rdf:li >
<Project rdf:about="http :// webing.felk.cvut.cz/projects /123">

<homepage >http :// webing.felk.cvut.cz/~ svihlm1/metamorphoses/
</homepage >

</Project >
</rdf:li >

</rdf:Bag >
</currentProject >

</Person >
</rdf:RDF >

APPENDIX B. SUMMARY OF OWL SUPPORT 129

B Summary of OWL support

Directly supported owl:Class, owl:ObjectProperty,
OWL features owl:DatatypeProperty

Indirectly supported OWL class axioms:
OWL features rdfs:subClassOf, owl:equivalentClass, owl:disjointWith,

Boolean combinations of class expressions:
owl:intersectionOf, owl:unionOf, owl:complementOf
RDF Schema property constructs:
rdfs:subPropertyOf, rdfs:domain, rdfs:range
Property relationships:
owl:equivalentProperty, owl:inverseOf
Logical characteristics of properties:
owl:TransitiveProperty, owl:SymmetricProperty
Property value constraints:
owl:allValuesFrom, owl:someValuesFrom, owl:hasValue

Unsupported owl:maxCardinality, owl:minCardinality, owl:cardinality,
OWL features owl:FunctionalProperty, owl:InverseFunctionalProperty

owl:Restriction, owl:onProperty
Irrelevant Versioning:
OWL features owl:versionInfo, owl:priorVersion,

owl:backwardCompatibleWith, owl:incompatibleWith,
owl:DeprecatedClass, owl:DeprecatedProperty
Annotation properties:
rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,
owl:AnnotationProperty, owl:OntologyProperty
Header Information:
owl:Ontology, owl:imports

Table B.1: Summary of OWL support

APPENDIX C. ACRONYMS USED IN THE TEXT 130

C Acronyms used in the text

All acronyms are defined when first used in the text, with the exception of frequently used

ones.

CLI Command Line Interface

DAO Database Access Object

DOM Document Object Model

DLG Directed Labeled Graph

DTD Document Type Definition

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JDBC (JDBC is a trademarked name and not an acronym, but obviously stands for) Java

Database Connectivity

JVM Java Virtual Machine

MVC Model-View-Controller

ODF Open Document Format

OO Object-Oriented

OODB Object Oriented Data Base

OWL Web Ontology Language

PHP PHP Hypertext Preprocessor

RDB Relational Database

RDBMS Relational Database Management System

RDF Resource Description Framework

APPENDIX C. ACRONYMS USED IN THE TEXT 131

RDFS RDF Schema

REST Representational State Transfer

SeRQL Sesame RDF Query Language

SPARQL SPARQL Protocol and RDF Query Language

SVG Scalable Vector Graphics

URI Unified Resource Identifier

URL Unified Resource Locator

XML eXtended Markup Language

XHTML Extensible HyperText Markup Language

WWW World Wide Web

W3C World Wide Web Consortium

